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1 Linear Functionals and Dual Space

Let E be a vector space with standard basis {e1, . . . en}, then a generic vector
in E has the unique expansion v = v

∑
j ejv

i =
∑
j e
jvj .

t A real linear functional α on E is a real-valued linear function α that is a
linear transformation α : E → R. So we have

α(av + bw) = aα(v) + bα(w) (1)

for real numbers a, b and vector v,w. By induction we have for any basis e

α(
∑

ejv
j) =

∑
α(ej)v

j (2)

so what we have is

α(v) =
∑

ajv
j where aj := α(ej) (3)

Definition The collection of all linear functionals α on a vector space E form
a new vector space E∗, the dual space to E. under the operations

(α+ β)(v) :=α(v) + β(w) α, β ∈ E∗, v ∈ E
(cα)(v) :=cα(v) c ∈ R

we may define a dual basis {σ1, . . . σn} of E∗ by putting

σi(ej) = δij (4)

and so by linearity we have

σi(
∑

ejv
j) =

∑
σi(ej)v

j = vi (5)

this means we can re-write 1.2 as

∑
j

α(ej)σ
j(v) =

∑
j

α(ej)σ
j

 (v) (6)

If one looks at 1.2 and 1.3 it is easy to see that α and
∑
j α(ej)σ

j are the same
so

α =
∑

α(ej)σ
j (7)
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2 The Differential of a Function

Definition Let f: Mn → R. the differential of f at p (on a manifold), written
as df , is the linear functional df : Mn

p → R defined by

df(v) = vp(f) (8)

In the above defintion v is a vector at p which is a differential operator of
functions near p. The above definition basis independent but if we choose local
co-ordinates (1.8) becomes

df

(∑
vj

∂

∂xj

)
=
∑

vj
∂f

∂xj
(9)

in the above equation we are using ej = ∂
∂xj

as a basis. If we consider the

differential of a particular coordinate Xi we have

dxi
(

∂

∂xj

)
=
∂xi

∂xj
= δij (10)

and in particular we have that

dxi
(∑

vj
∂

∂xj

)
=
∑

vj
∂xi

∂xj
= vi (11)

but the above behavior was exactly we observed for the a basis in the dual
space in (1.5) so we make the conclusion that σi = dxi. The most general
differential is then written as

α =
∑
j

α(
∂

∂xj
)dxi =

∑
j

ajdx
j (12)

The linear functional α is called a covariant vector or co-vector and∑
j aj(x)dxj is a co-vector field.
Let U and V be different charts on a manifold then under a change of coor-

dinates we have

dxiV =
∑
j

∂xiV
∂xjU

dxjU (13)

but a general co-vector is
∑
aVi dx

i
V and using above equation we have∑

aVi dx
i
V =

∑
aVi

∂xi
V

∂xj
U

dxjU =
∑
aUi dx

i
U so conclude that

aUj =
∑
i

aVi
∂xiV
∂xjU

(14)

compare this with a contravariant vector field which transforms as

Xi
V =

∑ ∂xiV
∂xjU

(p0)Xj
U (15)

As a consequence of this formalism we can make sense of the gradient vector
field
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2.0.1 Gradient vector

Let Mn be a pseudo-Riemannian manifold and f be a differentiable function.
The grad f= ∇f is the contravariant vector associated to the covector with df
i.e df(w) =< ∇f, w >

There is a correspondence between V and V ∗ and df is paired with ∇f in
this correspondence. Consider the following:

< v,w >=
∑
ij

vi < ei, ej > wj

Thinking about the < v,w > keep v fixed and vary w. This way we can
define a linear functional, ν(w) =< v,w >. We expand the functional in some
basis in the dual space ν =

∑
j vjσ

i with vj = ν(ej) =< v, ej >. Now we have

that vi =
∑
gijvj =

∑
j g

ij < v, ej >. So

v =
∑
j

viei =
∑
i

(
∑
j

gij < v, ej >)ei (16)

Let us now investigate the definition of the gradient given the above discussion
with (1.16) in mind

∇f =
∑
i

(∇f)iei =
∑
i

(
∑
j

gij < ∇f, ej >)ei (17)

and by definition df(w) =< ∇f, w >= w(f) =
∑
j w

j ∂f
∂xj so < ∇f, ej >=

ej(f) = ∂f
∂xj

. We thus arrive the following equation for the gradient

(∇f)i =
∑
j

gij
∂f

∂xj
(18)

Note that in euclidean geometry df and ∇f have the same coordinates.

2.0.2 Pull Back of Covector

We can also talk about the differential of a covector. Suppose we have a map
φ : Mn → V r. Then the differential of the map φ denoted as φ∗ takes one from
the tangent space of Mn to the tangent space of V r. The way define it is by
choosing a curve γ(t) such that γ(0) = p0 and ˙γ(0) = X where X is a vector

field and calculating (φ ◦ γ)′ = φ∗X = φ(γ(t)
dt |t=0. The matrix components of

this map are elements of the Jacobian i.e

(φ∗)
α
i =

∂φα

∂xi
(p) (19)

in terms of basis elements ∂
∂xi at p and ∂

∂yi at φ(p). So in terms of local
coordinates we can write:

3



φ∗(
∂

∂xj
) =

∑
i

∂yi

∂xj
∂

∂yi
(20)

Definition Let φ : Mn → V r be a smooth map of manifold and let φ(x) = y.
Let φ∗ : Mx → Vy be the differential of φ. The pull-back φ∗ is the linear
transformation taking co vector at y into covector at x, φ∗ : V (y)∗ → M(x)∗

defined by
φ∗(β)(v) := β(φ∗(v))

for all covectors β at y vectors v at x.

φ∗(β) =
∑
j

φ∗(β)

(
∂

∂xj

)
dxj =

∑
β

(
φ∗

∂

∂xj

)
dxj

=
∑

β

(∑
R

(
∂yR

∂xj

)
∂

∂yR

)
dxj

=
∑
jR

∂yR

∂xj
β

(
∂

∂yR

)
dxj

=
∑
jR

bR

(
∂yR

∂xj

)
dxj where β =

∑
R

bRdy
R

3 Tensors

3.0.1 Covariant Tensors

Definition A covariant tensor of rank r is a multilinear real-valued
function Q : E × E × E . . .× E → R

Q(v1, . . . vr) =Q

(∑
i1

vi1∂i, . . . ,
∑
ir

virr ∂ir

)
=
∑
i1...ir

vi11 . . . virr Q(∂i1 , . . . ∂ir )

=
∑
i1,...ir

Qir...irv
i1
1 . . . virr

where Qir...irv
i1
1 . . . virr := vi11 . . . virr .

Collection of all rank r co-variant tensor form a vector space denoted as
E∗ ⊗ E∗ ⊗ . . .⊗ E∗ = ⊗rE∗

Let α and β ∈ E∗ we form a second rank tensor with tensor product . We
need only to specify how α⊗ β : E × E → R. This we will be defined as

α⊗ β(v, w) := α(v)β(w) (21)
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3.0.2 Contravariant Tensor

Vector can be defined as a function acting on covectors

v(α) := α(v)

In component form v(α) = aiv
i.

Contravariant tensor is a multilinear function T on s-tuples of co-vectors:

T : E∗ × E∗ . . . E∗ → R

T (α1, . . . αs) = a1i1 . . . asisT
i1...is (22)

where T i1...is := T (dxi1 , . . . dxis)

The space of contravariant tensors is E ⊗ E ⊗ . . .⊗ E = ⊗rE

3.0.3 Mixed Tensor

Definition A mixed tensor , r times covariant and s times contravariant, is
a real multilinear function W

W : E∗ × E∗ × . . .× E∗ × E × E × . . .× E → R

on s-tuples of covectors and r-tuples of vectors

By multilinearity we have that

T (α1, . . . αs, v1, . . . vr) = ai1 . . . aisW
i1...is

j1...jr
vj11 . . . vjrr (23)

where
W i1...is

j1...jr
:= W (dxi1 , . . . ∂jr ) (24)

3.0.4 Transformation Properties of Tensors

Under a change of bases, ∂′l = ∂s(
∂xs

∂x′l ) and dx
′i = (∂x

′i

∂xc )dxc

W ′i...jk...l =W (dx
′i, . . . dx

′j , ∂′k, . . . ∂
′
l) (25)

=

(
∂x

′i

∂xc

)
. . .

(
∂x

′j

∂xd

)(
∂xr

∂x′k

)
. . .

(
∂xs

∂x′l

)
W c...d

r...s (26)

Similar equations can be found for contravariant and contravariant tensors.
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4 Grassmann (Exterior) Algebra

The grassmann or exterior algebra is a product that is a vast generalization of
scalar and vector products in vector analysis. Before we discuss it, we first begin
with a discussion of a simpler product, that is one defined with covectors.

Definition If α ∈
⊗p

E∗ and β ∈
⊗q

E∗, then their tensor product α⊗ β
is the covariant (p+q) -tensor defined by

α⊗ β(v1, . . .vp+q) := α(v1, . . . ,vp)β(vp+1, . . .vq)

Definition An (exterior) p-form is a covariant p-tensor α ∈
⊗p

E∗ that
is anti-symmetric i.e

α(. . . ,vr, . . . ,vs, . . .) = −α(. . . ,vs, . . . ,vr, . . .)

in each pair of entries.

The collection of p-forms is a vector

ΛpE∗ = E∗ΛE∗Λ . . .ΛE∗ ⊂
p⊗
E∗

By defintion Λ1E∗ = E∗the space of one forms and Λ0E∗ = R 0-forms or scalars

4.0.1 Multi-index Notation

Since we are dealing with p-forms we need to simplify our notation. I =
(i1, . . . ip) where these are indices for a p-form. So for example let α ∈ ΛpE∗

and let ∂i be a basis for E. Then α has np components denoted as

aI = ai1,...,ip = α(∂i1 , . . . ∂ip) = α(∂I) (27)

The indices in the above expressions and generally we be listed in strictly
increasing order. If we are on an n-dimensional manifold, we ask how large the
dimension of ΛpE∗ is. where p ≤ n. This amounts to a combinatorial problem
whose answer is the binomial coefficient.

dim
p

Λ E∗ =
n!

p!(n− p)!
(28)

Since if an index repeats, the exterior form is zero, an exterior form where
p > n will be zero, since an index will have to repeat.

We wish to define a product for α⊗β which is a (p+q) tensor. The problem
is that this need not be skew symmetric in all indices, so it need not be a
(p+q) form. This problem was solved by Grassmann who defined the following
product, which we will call the wedge product

α1 ∧ β1 := α⊗ β − β ⊗ α (29)
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in particular we have that

α1 ∧ β1(v, w) = α(v)β(w)− β(v)α(w) (30)

So α ∧ β is not only a tensor but a 2 form. We now define a generalized
kronecker delta

δI J :=1 if J = (j1, . . . jr) is an even permutation of I = (i1, . . . ir)

=− 1 if Jvis an odd permutation of I

=0 if J is not a permutation of I

We now define the permutation symbol

εI = εi1,...in = εI := δI12...n (31)

which defines whether the n indices i1, . . . in form an even or odd permu-
tation of 1, . . . n. This appears in the definition of the determinant detA =
εIA

i1
1A

i2
2 . . . A

in
n

We define the exterior or wedge or Grassmann product

∧ :
p

Λ E∗×
q

Λ E∗ →
p+q

Λ E∗

Concretely this means:

α ∧ β(vI) :=
∑
K

∑
J

δJKI α(vJ)β(vK) (32)

where I = (i1, . . . ip+q), J = (j1, . . . jp) and K = (k1, . . . kq).
For example let dim E = 5 and if e1, . . . e5 is a basis for E then

(α2 ∧ β1)523 =α2 ∧ β1(e5, e2, e3)

=
∑
r<s

∑
t

δrst523αrsβt

=δ253523α25β3 + δ352523α35β2 + δ235523α23β5

=− α25β3 + α35β2 + α23β5

One may consider the vector space of all forms over E∗.

∗
Λ E∗ :=

(
0

Λ E∗
)
⊕
(

1

Λ E∗
)
⊕ . . .⊕

(n
Λ E∗

)
.

This is the Grassmann or exterior algebra over E∗ with dim
∗
Λ E∗ =

(
n
0

)
+(

n
1

)
+ . . .+

(
n
n

)
= 2n

To show associativity of the algebra we use the following result namely:∑
J

= δIJM δKLJ = δIKLM (33)

7



We now show associativity:

[αp ∧ (βq ∧ γr)]M =
∑
IJ

δIJM αI(β
q ∧ γr)J

=
∑
IJKL

δIJM αIδ
KL
J βKγL

=
∑
IKL

δIKLM αIβLγL

[(αp ∧ βq) ∧ γr]M =
∑
NL

(αp ∧ βq)NγLδNLM

=
∑
NLIK

δIKN αIβKδ
NL
M δL

=
∑
IKL

IKL∑
M

αIβKγL

Suppose all the forms are 1-forms then

α1 ∧ α ∧ . . . αr(v1 . . .vr) =
∑
I

δIi1,...irα1(vi(1))α2(vi(2)) . . . αr(vi(r))

=det[αj(vi)]

and let (σ1, . . . σn) be a basis of 1 forms dual to (e1, . . . en) and let σI =⇒
σi1∧. . .∧σir and σI(eJ) = δI J then αp =

∑
I aIσ

I . Now we consider an n-tuple
of 1 forms τ1, τ2 . . . τn and expand them in terms of the basis i.e τ i = T i Iσ

j(we
are not assuming any scalar product) then:

τ I =
∑
J

T 1
j1T

2
j2 . . . T

n
jnδ

J
I σ

I

=det(T )σI

=det(T )σ1 ∧ . . . σn

5 Exterior Differentiation

The exterior derivative is a powerful form of differentiation of p-forms that
in a sense generalizes the different kinds of differentiation one meets in three
dimensional euclidean space. We now present a theorem that we shall not prove
that introduces the exterior derivative.

Theorem 5.1 There is a unique operator, exterior differentiation,

d :
p

Λ Mn →
p+1

Λ Mn
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satisfying
i) d is additive, d(α+ β) = dα+ dαβ
ii) d α0 is the usual differential of the function α0

iii) d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβqb
iv) d2α := d(dα) = 0, for all forms α

We instead introduce the operator by carrying specific computations in R3

5.0.1 Examples in Three Dimensions

Let x = x, y, z be any (perhaps curvilinear) coordinate system in R3. The
differential of a function f = f0 is

df0 =

(
∂f

∂x

)
dx+

(
∂f

∂y

)
dy +

(
∂f

∂z

)
dz (34)

If the coordinates are cartesian then we have that df = ∇f.dx. Considering
a 1-form in general form i.e α1 = a1(x)dx+ a2(x)dy + a3(x)dz then

dα1 = da1 ∧ dx+ da2 ∧ dy + da3 ∧ dz

= [

(
∂a1
∂x

)
dx+

(
∂a1
∂y

)
dy +

(
∂a1
∂z

)
dz] ∧ dx

+[

(
∂a2
∂x

)
dx+

(
∂a2
∂y

)
dy +

(
∂a2
∂z

)
dz] ∧ dy

+[

(
∂a3
∂x

)
dx+

(
∂a3
∂y

)
dy +

(
∂a3
∂z

)
dz] ∧ dz

= (∂ya3 − ∂za2)dy ∧ dz + (∂za1 − ∂xa3)dz ∧ dx+ (∂xa2 − ∂ya1)dx ∧ dy

So in cartesian coordinates we have that

d(A · dx) = (curlA) · dS (35)

for a 2-form β2 = b1(dx ∧ dy) + b2(dx ∧ dz) + b3(dy ∧ dz) = B · dS then

β2 = db1 ∧ dx ∧ dy + db2 ∧ dx ∧ dz + db3 ∧ dy ∧ dz

=
∂b1
∂z

dz ∧ dx ∧ ∂dy +
∂b2
∂y

dy ∧ dx ∧ ∂dz +
∂b3
∂x

dx ∧ dy ∧ ∂dz

= (∇ ·B)dV

NOTE: We have already laid the ground for generalizing and combining
the divergence theorem and stokes theorem learned in multivariable calculus.
These are the identities that appear as the integrands.
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6 Interior Product and Vector Analysis

Another operation we can talk about for p-forms is a generalized notion of
contracting a tensor. This notion is encapsulated in the definition of an interior
product, which will be presented as a theorem and will not be proved.

Definition If v is a vector and α is a p-form, their interior product (p-1)
form ivα is defined by

ivα
0 = 0

ivα
1 = α(v)

ivα
p(w2, . . .wp)b = αp(v,w2, . . .wp)

iA+B = iA + iB and iaA = aiA. Sometimes this the interior product will be
referred to as i(v)

We present the following theorem which will not be proved.

Theorem 6.1 iv: Λp → Λp−1 is an antiderivation i.e ,

iv(αp ∧ βq) = [ivα
p] ∧ βq + (−1)pαp ∧ [ivβ

q]

Again, we give an introduction to the product by giving specific computa-
tions.
Let E = R3 with the basis e1, e2, e3 and cobasis being e1, e2, e3. Suppose
α ∈ Λ2(R3) more specifically α = e3 ∧ e2 and v = e1 and w ∈ R3 Then
computing the interior product ivα goes as follows:

ivα(w) =α(v, w)

=e3 ∧ e2(e1, w)

=e3(e1)e2(w)− e2(e1)e3(w)

=0.

if we change v so that v = e2, the computation proceeds as follows

ivα(w) =α(v, w)

=e3 ∧ e2(e2, w)

=e3(e2)e2(w)− e2(e2)e3(w)

=− e3(w)

6.0.1 Reformulating Vector Analysis

The machinery for dealing with differential forms (what we have been calling
p-forms) offers and very powerful way of dealing with vectors in three dimen-
sions and makes otherwise tedious calculations “trivial”. If this is to be done
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we need a way of translating operations for p-forms in terms of operations one
uses in three dimensions.

What is the 1-form that corresponds to vectors ?
Roughly speaking, to every vector in R3 we associate a certain 1-form.

More specifically, in section 1.2 we introduced the dual vector ν =<, v > since
ν(w) =< w, v > so the correspondence is

v⇔ v1dx
1 + v2dx

2 + v3dx
3

What is the 2-form we associate with vectors?
Looking at the expressions derived for the divergence of vectors we see that a
volume form for R3 is a associated with a 3-form. But we need a two form,
so it turns out that we can use the interior product to reduce the three form
to a 2-form. One might ask why we do not straight away simply use a 2-form.
This is because the 2 form we want should care about the orientation of our
space. So it turns out what we really need is a pseudo 2-form ν2 := ivvol

3 where
vol3 is a volume form. We justify the statement by carrying out the following
computation

iv
√
g(u)du1 ∧ du2 ∧ du3 =

√
g
∑

vii(∂i)(du
1 ∧ du2 ∧ du3)

i(∂i)(du
1 ∧ du2 ∧ du3) =du1(∂i)du

2 ∧ du3 − du2(∂i)du
1 ∧ du3 + du1 ∧ du2du3(∂i)

=δ1 idu
2 ∧ du3 − δ2 idu1 ∧ du3 + δ3 idu

1 ∧ du2

So to the vector v we associate the pseudo 2-form

v⇔ ν2 := ivvol
3

where

ivvol
3 =
√
g(v1du2 ∧ du3 + v2du1 ∧ du3 + v3du1 ∧ du2) (36)

In R3 given two vectors v and w with associated covectors ν1 =<,v >
,ω1 =<,w > we know that

< v,w >= ivω
1 (37)

We can also associate with them their 2-forms ν2 and ν2 and we have that

ν1 ∧ ω2 =< v,w > vol3 (38)

The proof of the above expression is

ν1 ∧ ω2 =ν1 ∧ iwvol3

=iwvol
3 ∧ ν1

=iw(vol3 ∧ ν1) + vol3 ∧ iwν1

=iwvol
3
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One operation in R3 is the cross-product. Calculating the cross-product of
two vectors we know that the components are the same as those of ν1 ∧ ω2. So
one would like to say that we associate v × w to the 2-form ν1 ∧ ω2. But we
only have a pseudo 2-form so instead we say that we associate the pseudovector
v ×w with the 2-form ν1 ∧ ω2.

iv×w = ν1 ∧ ω1 (39)

Not often taught is that the cross-product is defined as the unique vector
such that

< v ×w, c >= vol3(v,w, c) (40)

We also look for the 1-form associated with the cross-product of v×w. We
start with (1.40)

< v ×w, c >= vol3(v,w, c) = −vol3(w,v, c)

= −[iw(vol3)](v, c)

= −ω2(v, c)

= −ivω2(c)

Thus we have that

ivω
2 is the covariant version of v ×w (41)

We can now apply the above formalism to do non-trivial vector operations
Example Calculations

1.Calculate A× (B × C)
A, B, C go into their corresponding 1-forms i.e B⇔ β1, C ⇔ γ1 so that the
expression becomes iA(β1 ∧ γ1) = iA(β1)γ1 − β1iA(γ1) = (A ·B)C −B(A · C)
.
2. Show A · (B × C) = B · (C ×A) = C · (A×B)
We associate with C ⇐ γ2, B ⇔ β2, A⇔ α2

A · (B × C)⇔ −iA(iBγ
2) = −iBiA(γ2) = −B · (A× C) = B · (C ×A)

B · (C ×A)⇔ iBiCα
2 = −iCiB(α2) = −C · (B ×A).

This shows we have vector algebra neatly in our hands.

What about vector calculus?
We defined df =<,∇f > , now we define the curl A by using A ⇔ α1 and
then curl A ⇔ dα1. These identifications are inspired by the calculations we
did with the exterior differential operator. Thus

dα1 = icurlAvol
3 (42)

and we define div B by using B ⇐ β2 and then

dβ2 = (divB)vol3 (43)
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We can now write down general expressions for the divergence of a vector
field without reference to any specific coordinate system

d(iBvol
3) =d[

√
gb1du2 ∧ du3 +

√
gb2du3 ∧ du1 +

√
gb3du1 ∧ du2]

=[
∂

∂u1
(
√
gb1) +

∂

∂u2
(
√
gb2) +

∂

∂u3
(
√
gb3)]du1 ∧ du2 ∧ du3

=
1
√
g

∂

∂ui
(
√
gbi)
√
gdu1 ∧ du2 ∧ du3

So

divB =
1
√
g

∂

∂ui
(
√
gbi) (44)

For a scalar function f we associate with it a pseudo 3 form fvol3.
One can use the above expression for the divergence and the expression for the
gradient found in (1.2) to write down a general expression for the laplacian.

∇2f =
1
√
g

∂

∂ui
(
√
ggij

∂f

∂xi
) (45)

3. Calculate ∇ · (A×B)
div(A × B)vol3 = d(α1 ∧ β1) = dα1 ∧ β1 − α1 ∧ dβ1 using (1.38) we have
< curlA,B > vol3− < A, curlB > vol3. Thus we have that ∇ · (A × B) =
(∇×A) ·B −A · (∇×B)

4. Calculate ∇(fg)
∇(fg)⇔ d(fg) = dfg + fdg ⇔ ∇fg + f∇g

5. Calculate ∇ · (fB)
div(fB)vol3 = d(fβ2) = df ∧ β2 + fdβ2 =< B,∇f > +f divB vol3 So,
∇ · (fB) = ∇f ·B + f∇ ·B

6. Calculate ∇× (fA)
∇× ⇔ d so ∇× (fA)⇔ d(fα1) = df ∧ α1 + fdα1 ⇔ ∇f ·A + f∇×A
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