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1 Linear Functionals and Dual Space

Let E be a vector space with standard basis {ey,...e,}, then a generic vector

in E has the unique expansion v = v}, e;0" =3, elv;.

t A real linear functional o on E is a real-valued linear function a that is a
linear transformation o : £ — R. So we have
alav + bw) = aa(v) + ba(w) (1)
for real numbers a,b and vector v, w. By induction we have for any basis e
a(d ev)) = alen’ (2)
so what we have is

alv) = Zajvj where a; := a(e;) (3)

Definition The collection of all linear functionals a on a vector space E form
a new vector space E*, the dual space to E. under the operations

(a+B)(w) ==a)+p(w) o BeE*, wvekE
(ca)(v) :=ca(v) ceR

we may define a dual basis {0!,...0"} of E* by putting
a'(e;) = 3 (4)
and so by linearity we have
o' (D epl) =) o'’ =o' (5)
this means we can re-write 1.2 as
Y ale)o’(v) = | D ale)o’ | (v) (6)
J J

If one looks at 1.2 and 1.3 it is easy to see that v and a(ej)o? are the same

o= Za(ej)aj (7)



2 The Differential of a Function

Definition Let f: M™ — R. the differential of f at p (on a manifold), written
as df, is the linear functional df : M} — R defined by

df (v) = vp(f) (8)

In the above defintion v is a vector at p which is a differential operator of

functions near p. The above definition basis independent but if we choose local
co-ordinates (1.8) becomes
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in the above equation we are using e; = % as a basis. If we consider the
differential of a particular coordinate X* we have
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and in particular we have that

. .0 Ozt .
d.’L‘Z (Zv‘yax‘?> = Zvjaixj :UZ (11)
but the above behavior was exactly we observed for the a basis in the dual

space in (1.5) so we make the conclusion that ¢ = dz’. The most general
differential is then written as

a= Za(a?cj)dxi = Zajdxj (12)

J
The linear functional « is called a covariant vector or co-vector and
>0 (x)da? is a co-vector field.
Let U and V be different charts on a manifold then under a change of coor-
dinates we have

i oxt,
dx}, = Z ﬁdw{] (13)
j

but a general co-vector is Sal dxz{/ and using above equation we have
. 8 7 . .
Yaydzi, =3 a¥ Z2edal, = Y al dal; so conclude that

v ox,

ozt

U _ v 0%y
a; = Zai Dmiv (14)

(]
compare this with a contravariant vector field which transforms as
, (930%/ )
Xy = Z 37(190))% (15)
U

As a consequence of this formalism we can make sense of the gradient vector
field



2.0.1 Gradient vector

Let M™ be a pseudo-Riemannian manifold and f be a differentiable function.
The grad f= Vf is the contravariant vector associated to the covector with df
ie df(w) =< Vf,w>

There is a correspondence between V and V* and df is paired with Vf in
this correspondence. Consider the following:

<v,w >= Zvi < e;,e; > w?
j
Thinking about the < v,w > keep v fixed and vary w. This way we can
define a linear functional, v(w) =< v,w >. We expand the functional in some
basis in the dual space v =, v;o" with v; = v(e;) =< v,e; >. Now we have
that v' = " g¥v; = > g9 <wv,e; >. So

v = Zviei = Z(Z g7 <wv,ej >)e; (16)

i

Let us now investigate the definition of the gradient given the above discussion
with (1.16) in mind

Vf= Z(Vf)iei = Z(Z g7 < Ve >)e (17)

K3

and by definition df (w) =< Vf,w >= w(f) = Zj wj% so < Vf,e >=

e;j(f) = ngj' We thus arrive the following equation for the gradient

(Vf) = Zg”% (18)

Note that in euclidean geometry df and V f have the same coordinates.

2.0.2 Pull Back of Covector

We can also talk about the differential of a covector. Suppose we have a map
¢ : M™ — V", Then the differential of the map ¢ denoted as ¢, takes one from
the tangent space of M™ to the tangent space of V. The way define it is by
choosing a curve «(¢) such that v(0) = pg and v(0) = X where X is a vector

field and calculating (¢ o y) = ¢ X = %h:o. The matrix components of
this map are elements of the Jacobian i.e

_ 99"
- Oxt

()7 (p) (19)

in terms of basis elements 821, at p and % at ¢(p). So in terms of local

coordinates we can write:




oyt 0
8957 Z oxI Oyt (20)

Definition Let ¢ : M™ — V" be a smooth map of manifold and let ¢(x) = y.
Let ¢, : M, — V, be the differential of ¢. The pull-back ¢* is the linear
transformation taking co vector at y into covector at x, ¢* : V(y)* — M (z)*

defined by
¢*(B)(v) := B(¢«(v))

for all covectors 8 at y vectors v at x.
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3 Tensors

3.0.1 Covariant Tensors

Definition A covariant tensor of rank r is a multilinear real-valued
function Q: EXEXE...xE—R

Qvi,...v.) =Q (Zv“@i, .. .721),’;*8“)
= Z ’Uil...’Uir (8i1,...3iT)

T
= Qiavy
7;1;-<~7flr
where Q;; vit ... vir =it yir,
Collection of all rank r co-variant tensor form a vector space denoted as
FFQFEF'®.. B*=Q"E*
Let a and 5 € E* we form a second rank tensor with tensor product . We
need only to specify how a ® 8: F x E — R. This we will be defined as

a® pv,w) = a(v)f(w) (21)



3.0.2 Contravariant Tensor

Vector can be defined as a function acting on covectors
v(a) = a(v)

In component form v(a) = a;v’.

Contravariant tensor is a multilinear function T on s-tuples of co-vectors:

T:E*xE*...E*—>R
T(Oél, R Oés) = Q14y - - - O,sisTil"'iS
where T % := T(dx™,...dx")
The space of contravariant tensors is FEQ F® ... E=Q"F

3.0.3 Mixed Tensor

Definition A mixed tensor , r times covariant and s times contravariant, is

a real multilinear function W
W:E*"XE" x.. xE*xExEx...xE—R
on s-tuples of covectors and r-tuples of vectors

By multilinearity we have that

_ i1 J1 j
T(o, ... QU1 V) = Gjy - W™ Ul Lol
where
Q1. o i1 )
Witele o= W(da", ... 0;,)

3.0.4 Transformation Properties of Tensors

Under a change of bases, 0] = 85(3%2) and dz't = (%fclc )dx®

W =W o

(23)

(24)

(25)
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Similar equations can be found for contravariant and contravariant tensors.



4 Grassmann (Exterior) Algebra

The grassmann or exterior algebra is a product that is a vast generalization of
scalar and vector products in vector analysis. Before we discuss it, we first begin
with a discussion of a simpler product, that is one defined with covectors.

Definition If o € @” F* and 3 € @7 E*, then their tensor product a® 3
is the covariant (p4q) -tensor defined by

a® BV, ... Vprq) = a(Vi, ..., Vp)B(Vpi1,...Vq)

Definition An (exterior) p-form is a covariant p-tensor a € ®” E* that
is anti-symmetric i.e

ooy Vg ooy Vayoo) = =) Vg, ooy Vi, o)
in each pair of entries.

The collection of p-forms is a vector

P
APE* = E*AE"A .. .AE* C R)E”
By defintion A' E* = E*the space of one forms and A°E* = R 0-forms or scalars

4.0.1 Multi-index Notation

Since we are dealing with p-forms we need to simplify our notation. I =
(41,...1p) where these are indices for a p-form. So for example let a € APE*
and let J; be a basis for E. Then « has n? components denoted as

ay = ail,m,ip = a(@il, e 8%) = a(@I) (27)

The indices in the above expressions and generally we be listed in strictly
increasing order. If we are on an n-dimensional manifold, we ask how large the
dimension of APE* is. where p < n. This amounts to a combinatorial problem
whose answer is the binomial coefficient.

dim A B = — " (28)
pl(n—p)!

Since if an index repeats, the exterior form is zero, an exterior form where
p > n will be zero, since an index will have to repeat.

We wish to define a product for a® 8 which is a (p+q) tensor. The problem
is that this need not be skew symmetric in all indices, so it need not be a
(p+q) form. This problem was solved by Grassmann who defined the following
product, which we will call the wedge product

Al Apfl=a®B-F0a (29)



in particular we have that
a' A B (v, w) = a(v)B(w) — Bv)a(w) (30)

So a A [ is not only a tensor but a 2 form. We now define a generalized
kronecker delta

§';:=1ifJ = (j1,...j,) is an even permutation of I = (i1,...i,)
= — 1 if Jvis an odd permutation of I

=0 if J is not a permutation of I
We now define the permutation symbol
= 61 = 5{277, (31)

which defines whether the n indices iy,...4, form an even or odd permu-
tation of 1,...n. This appears in the definition of the determinant detA =
efA" A, LA

n
We define the exterior or wedge or Grassmann product

p+q

AAE*x AE* — A E*

Concretely this means:

ahB(vi) = 6{%a(v,)B(vk) (32)
K J

where I = (il, “e -ip—&-q)a J = (.j17 N ]p) and K = (kl, [P kq)
For example let dim E = 5 and if e, ... e5 is a basis for E then

(@® A BY)s23 =a® A B (e5, €2, €3)

= Z Z 6g§éarsﬁt

r<s t
__ 253 352 235
*55230425@% + 5523043552 + 5523042365

= — 583 + a3s5f2 + a3 fs

One may consider the vector space of all forms over E*.
* 0 " 1 " n "
AE = <AE > ® <AE ) o...o (R E)

This is the Grassmann or exterior algebra over E* with dim A E* = (5) +
05t ()=

n
To show associativity of the algebra we use the following result namely:

> =aifoft =it (33)
J



We now show associativity:

[ A (BT AN =Y 63f (BT A )g
1J

1J KL
= Z 5MO¢15,] BrYL
IJKL

=> o FarBrL
IKL

[(a” ABY) Ay I = Z(ap A BYNYLON"

NL
§ : IK NL
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Suppose all the forms are 1-forms then

g NaA. . ap(vy...vy) = Z (51-117‘__“041(Vi(l))ag(vi(z)) coan(Vigry)
1

—det{o(v;)]

and let (o!,...0™) be a basis of 1 forms dual to (ey,...e,) and let o/ =
o' A...Ac'r and ol (ey) = 6! ; then o = 3", ajo’. Now we consider an n-tuple
of 1 forms 71,72 ... 7" and expand them in terms of the basis i.e 7% = T" ;07 (we
are not assuming any scalar product) then:
J17 72

=TT T 6 o
J

=det(T)o!
=det(T)o' A...0"

5 Exterior Differentiation

The exterior derivative is a powerful form of differentiation of p-forms that
in a sense generalizes the different kinds of differentiation one meets in three
dimensional euclidean space. We now present a theorem that we shall not prove
that introduces the exterior derivative.

Theorem 5.1 There is a unique operator, exterior differentiation,

D p+1
d:AM"—= A M"



satisfying

i) d is additive, d(a + ) = da + daf

ii) d o is the usual differential of the function o
ii1) d(aP A BY1) = daP A B9+ (—1)PaP AdB7D

) d?a = d(da) =0, for all forms «

0

We instead introduce the operator by carrying specific computations in R3

5.0.1 Examples in Three Dimensions

Let x = x,y,z be any (perhaps curvilinear) coordinate system in R3. The
differential of a function f = f is

) ) )
df’ = (ai) dz + <a£) dy + (af) dz (34)

If the coordinates are cartesian then we have that df = V f.dx. Considering
a 1-form in general form i.e a! = a;(x)dr + as(x)dy + a3(x)dz then

dat =dai ANdx + daz N dy + daz A dz
. daq Odaq day
Oas Oay day

8a3 80,3 8&3

= (Oyaz — 0,a2)dy A dz + (0,a1 — Ozagz)dz A dx + (Ozaz — Oyar)dx A dy

S g

So in cartesian coordinates we have that
d(A - dx) = (curlA) - dS (35)

for a 2-form 32 = by(dz A dy) + ba(dx A dz) + bz(dy A dz) = B - dS then

(% =dby Adx Ady+ dbs Adx Adz+ dbs Ady Adz
:%dz/\d:c/\ady+%dy/\dx/\ﬁder%dx/\dy/\adz
0z oy or

= (V-B)dVv

NOTE: We have already laid the ground for generalizing and combining
the divergence theorem and stokes theorem learned in multivariable calculus.
These are the identities that appear as the integrands.



6 Interior Product and Vector Analysis

Another operation we can talk about for p-forms is a generalized notion of
contracting a tensor. This notion is encapsulated in the definition of an interior
product, which will be presented as a theorem and will not be proved.

Definition If v is a vector and « is a p-form, their interior product (p-1)
form iy« is defined by

iva® =0
ival = a(v)
ivaP(wa,...wp)b=aP(v,wa,...Wp)

iA+B = ta + i and inaa = aia. Sometimes this the interior product will be
referred to as i(v)

We present the following theorem which will not be proved.
Theorem 6.1 i,: AP — AP~! is an antiderivation i.c ,
iv(a” A B7) = [iva”] A BT+ (=1)Pa? A [iv ]

Again, we give an introduction to the product by giving specific computa-
tions.
Let E = R? with the basis ej, es,e3 and cobasis being e, e?,e3. Suppose
a € A%(R®) more specifically @ = e3> Ae? and v = e; and w € R3 Then
computing the interior product iy« goes as follows:
iva(w) =a(v,w)
=e3 N e?(eq,w)
=c’(e1)e?(w) — e*(er)e’ (w)

=0.
if we change v so that v = ey, the computation proceeds as follows
iva(w) =a(v,w)
=e3 A e?(eq, w)

=c’(e2)e?(w) — €*(e2)e’ (w)

=~ w)

6.0.1 Reformulating Vector Analysis

The machinery for dealing with differential forms (what we have been calling
p-forms) offers and very powerful way of dealing with vectors in three dimen-
sions and makes otherwise tedious calculations “trivial”. If this is to be done

10



we need a way of translating operations for p-forms in terms of operations one
uses in three dimensions.

What is the 1-form that corresponds to vectors ?

Roughly speaking, to every vector in R® we associate a certain 1-form.
More specifically, in section 1.2 we introduced the dual vector v =<, v > since
v(w) =< w, v > so the correspondence is

v & vide! + vadz? + vyda®

What is the 2-form we associate with vectors?

Looking at the expressions derived for the divergence of vectors we see that a
volume form for R? is a associated with a 3-form. But we need a two form,
S0 it turns out that we can use the interior product to reduce the three form
to a 2-form. One might ask why we do not straight away simply use a 2-form.
This is because the 2 form we want should care about the orientation of our
space. So it turns out what we really need is a pseudo 2-form v? := i, vol® where
vol?® is a volume form. We justify the statement by carrying out the following
computation

ivy/g(u)dut A du® A du® :\/EZ v"i(0;) (du A du® A du®)

i(9;) (dut A du? A du®) =du* (0;)du? A du® — du?(0;)du* A du® + du* A du?du®(0;)

=61, du® A du® — 62 ;dut A dud + 63 dut A du®
So to the vector v we associate the pseudo 2-form
v & 2= iyvol®
where
iyvol® = \/ﬁ(vldug A du® + v?dut A du? 4+ v3dut A du?) (36)

In R? given two vectors v and w with associated covectors v! =<,v >
,w! =<, w > we know that

<V, W >=iyw! (37)
We can also associate with them their 2-forms % and v? and we have that
VAW =< v, w > vol? (38)
The proof of the above expression is
v Aw? = Adguol®
=iwvol® A vt
=iw(vol® A UY) 4+ vol® A iy

=iwvol®

11



One operation in R? is the cross-product. Calculating the cross-product of
two vectors we know that the components are the same as those of ' A w?. So
one would like to say that we associate v x w to the 2-form v' A w?. But we
only have a pseudo 2-form so instead we say that we associate the pseudovector
v x w with the 2-form v' A w?.

foxw =V Aw! (39)

Not often taught is that the cross-product is defined as the unique vector
such that
<V xXw,c>=wvol*(v,w,c) (40)

We also look for the 1-form associated with the cross-product of v x w. We
start with (1.40)

< v xXw,c>=vol(v,w,c) = —vol*(w,v,c

= —[iw(vol®)](v,c

Thus we have that
iyw? is the covariant version of v x w (41)

We can now apply the above formalism to do non-trivial vector operations
Example Calculations

1.Calculate A x (B x C)
A, B, C go into their corresponding 1-forms i.e B& ', C < ~! so that the
expression becomes i4 (B8 AYY) = is (B! — Blia(y!) = (A- B)C — B(A-O)

2. Show A- (Bx(C)=B-(Cx A)=C-(AxB)

We associate with C' <= ~2, B < %2, A & o?

A-(BxC) & —ialipy?) = —ipia(y?) = —-B- (AxC)=B-(C x A)
B - (C X A) =4 iBicaQ = —iciB(OéQ) =-C- (B X A)

This shows we have vector algebra neatly in our hands.

What about vector calculus?

We defined df =<,V f > , now we define the curl A by using A < o' and
then curl A < da!. These identifications are inspired by the calculations we
did with the exterior differential operator. Thus

dat = ieymavol® (42)
and we define div B by using B < 32 and then

dp? = (divB)vol® (43)

12



We can now write down general expressions for the divergence of a vector
field without reference to any specific coordinate system

d(igvol®) =d[/gb'du® A du® + /gb?du® A du' + \/gb*du* A du?]
0 1 9 2 9 3 1 2 3

gt
1 0 i 1 2 3
:ﬁaui(\/gb )Vgdut Adu® Adu

So L 8
divB = —

Vg oul
For a scalar function f we associate with it a pseudo 3 form fvol®.
One can use the above expression for the divergence and the expression for the
gradient found in (1.2) to write down a general expression for the laplacian.

(Vag" o%) (15)

(vgb") (44)

_ 109
_\/Ef)ui

V2 f

3. Calculate V - (A x B)

div(A x B)vol® = d(a* A BY) = dat A B — ol A dB using (1.38) we have
< curlA,B > vol>— < A,curlB > vol3. Thus we have that V - (A x B) =
(VxA)-B—A-(VxB)

4. Calculate V(fg)

V(fg) < d(fg) =dfg+ fdg < Vfg+ fVyg

5. Calculate V - (fB)

div(fB)vol® = d(f5%) = df A B2 + fdf? =< B,Vf > +f divB wvol® So,
V- (fB)=Vf-B+fV-B

6. Calculate V x (fA)
Vx & dsoV x (fA)ed(fal)=df hal + fda! & Vf- A+ fV x A
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