
Our treatment of Lie groups will be concentrate mainly on Matrix Lie groups
which will be defined later. But for now we simply give a taste of the general
approach to Lie groups which views them as manifolds.

1 A brief Introduction to the general theory of
Lie groups

Definition A Lie group is a differentiable manifold G which is also a group
such that the group product

G×G→ G

and the inverse map g → g−1 are differentiable.

This means that in order to understand the lie groups we will need to study
manifolds.

Definition A manifold, M is a topological space such that for every point m
inM there is a neighborhood U of m and a one to one continuous map φ to Rn
i.e onto some open set φ(U) of Rn such that the inverse map φ−1 : φ(U) → U
is also continuous. If the point m lies in intersection of two subsets of M ,
Ui and Uj , with their respective maps φi and φj we demand that φi ◦ φ−1

j is
continuous and differentiable

The tangent space at m toM, denoted as Tm(M) is the set of all linear
maps X from C∞(M) into R satisfying:

1. “product rule”: X(fg) = X(f)g(m) + f(m)X(g) ∀f and g ∈ (C∞(M)

2. “localization”: If f is equal to g in a neighborhood of m, thenX(f) = X(g)

An element of the tangent space is called the tangent vector. One can
prove that if x1, . . . xn is a local coordinate system, then each tangent vector X
at m can be expressed uniquely as

X(f) =

n∑
k=1

ak
∂f

∂xk
(m).

Thus is the manifold is n dimensional the tangent space is also n dimensional.
What we done is defined the notion of a tangent space without relying on the

manifold being embedded in some larger euclidean space. The definition given
above of the tangent vector is the generalization of the directional derivative.
The reason we chose the directional derivative is that it does not depend on a
curve moving through the specific point where it is defined.
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1.1 Differentials of smooth mappings

A map Φ from a manifoldM of dimension n to an manifold N of dimension
m is called smooth if it is smooth for every local coordinates system φα on M
and φβ on N and the map φβ ◦ Φ ◦ φ−1

α is a smooth map from an open subset
of Rn to Rm. Given a smooth map one can define a differential at every point
m in M, denoted by Φ∗,m. This is the linear map of Tm(M) into TΦ(m)(M)
given by

Φ∗,m(X)(f) = X(f ◦ Φ)

where f is a smooth real valued function of N , X is a tangent vector at m
to M. The map Φ∗,m will be a matrix of partial derivatives. An easy way to
see this is that there are locally coordinates systems on M and N , the map
goes from M to N but X is defined with coordinates from M, so we need the
jacobian.

Suppose that γ : (a, b)→M is a smooth curve. Then for each t ∈ (a, b) we
will let dγ

dt denote the element of Tγ(t)(M) with the property that:

dγ

dt
(f) =

df(γ(t))

dt
(1)

for all smooth functions ofM. In a smooth local coordinate system (x1, . . . , xn),
we can find smooth functions x1(t), . . . , xn(t) with xk(t) being xk(γ(t)). The

chain rule then says that df(γ(t))
dt =

∑ ∂f
∂xk

dxk

dt . Combining this with the equa-
tion above we have that

dγ

dt
=
∑ ∂f

∂xk

dxk
dt

(2)

1.2 Vector fields

A vector field is a map X that associates to each point m inM a tangent
vector Xm ∈ Tm(M). In a local coordinate system we have:

Xm(f) =

n∑
k=1

ak(m)
∂f

∂xk
(3)

where the ak are real valued functions. We can apply a vector field X to a
function f by applying Xm to f. The result is another function. So smooth
vector field is a map from C∞(M)→ C∞(M) that satisfies the product rule in
the form

X(fg) = fX(g) +X(f)g

in the above definition we are not evaluating f or g at any point. The equation
can be summarized or restated as saying that a vector field is a derivation of
the algebra of smooth functions.

We can view vector fields are first order differential operators, if we consider
the product of two vector fields YX, this will be a second order differential
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operator but will not be a vector field but if we consider the commutator of
the vector fields then the second order terms cancel out and we arrive again at
a first order differential operator. So in other words the commutator produces
another vector field. This is important fact when we arrive at describing the lie
algebra of a lie group.

1.3 Flow Along a vector field

If X is a vector field and γ : (a, b) →M is a smooth curve in M, then γ is
called an integral curve for X if for each t ∈ (a, b) , we have dγ

dt = Xγ(t). In a
smooth local coordinate system x1, x2, . . . xn, γ(t) is represented by the family
of functions x1(t), x2(t), . . . xn(t). In light of (4.2) and (4.3) , dγdt = Xγ(t) implies
that

dxk(t)

dt
= ak(x1(t), . . . , xn(t)) (4)

This is a system of ordinary differential equations(not necessarily linear) and
applying results from differential equations we get existence and uniqueness.

A vector field X is called complete if γ(t) can be defined for all t for initial
points m. Any vector field on a compact manifold is always complete. If X is a
complete vector fieldm then one can define the associated flow onM. This sis
a family of maps Φt :M→M defined so that if γ is an integral curve for X with
γ(0) = m, then Φ)t(m) = γ(t). This means that Φ)t(m) is defined starting at
ma and “flowing” along the vector field X for time t. If X is a smooth complete
vector field, then each Φt is a smooth map of M to itself, and he maps satisfy
Φt ◦ Φs = Φt+s

We have already given the definition of a lie group and talked about lie
algebras in some detail.

1.4 The Lie Algebra

If G is a Lie group and g an element of G, we define a map Lg : G→ G by
Lg(h) = gh, this is the “left multiplication by g” map. which is smooth since
the product map G→ G is assumed itself to be smooth. The differential of Lg
denoted as (Lg)∗ will be a linear map of Lg at point h from Th(G) to Tgh(G).
A vector field is called left invariant if X satisfies:

(Lg)∗(Xh) = Xgh (5)

Let Te(G) denote the tangent space at the identity then given any vector
v ∈ Te(G) there is a unique left invariant vector field Xv with Xv

e = v which
can be constructed by defining

Xv
g = (Lg)∗(v) = (Lg)(X

v
e ) (6)
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We can show that this vector field is left invariant thusly:

(Lh)∗(X
v
g ) =(Lh)∗(Lg)∗(v)

=(Lgh)∗(v)

=(Lgh)∗(X
v
e )

=Xv
gh

Definition The Lie algebra g of a Lie group G is the tangent space at the
identity with the bracket operation defined by

[v, w] = [Xv, Xw]e

If we identitfy the space of left invariant vector fields with Te(G) by means
of the map v ←→ Xv, then g is just the space of left invariant vector fields
which forms a lie algebra under the commutator of vector fields.

1.5 Exponential Mapping

The exponential mapping for a general Lie group is defined in terms of the
flow along left-invariant vector fields, this is justified because every left invariant
vector field on G is complete.

Definition Let G be a lie group and let g = Te(G) be its lie algebra. For each
v ∈ g, let Xv be the associated left-invariant vector field and let Φvt be the
associated flow. Then the exponential mapping is the map exp: g→ G defined
by

exp(v) = Φvt (e)

This means if we want to calculate exp(v) we construct the left invariant
field Xv and we then calculate its integral curve γv that starts at the identity.
Then exp(v) = γv(1)

1.5.1 Matrix Lie Groups as Lie Groups

To make the connection between Matrix Lie Groups and general lie groups,
the integral curve we choose is γ(t) = etX where X is an element in the lie
algebra. This chosen so that it’s value at the identity is X. To show that etX is
an integral curve we need to show that

dγ(t)

dt
= (LetX )∗(X) (7)

Note: Remember for an integral cure γ(t) we have that dγ(t)
dt = Xγ(t)
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We proceed in the following manner:

d

dt
etX =

d

da
e(t+a)X |a=0

=
d

da
etXeaX |a=0

=
d

da
LetXe

aX |a=0

=(LetX )∗
d

da
eaX |a=0

=(LetX )∗(X)

So every matrix Lie group is a Lie group.

2 Bridge between Lie Groups and Matrix Lie
Groups

It is helpful to make a more concrete connection between looking at lie groups
as manifolds and forgetting about their manifold structure.

We proceed by analyzing the affine group of the line A(1) with matrix rep-
resentation (

x y
0 1

)
with x > o or the right half of the plane.

Let t → h(t) be a curve of matrices in the group G with h(0) = h and
h′(0) = Xh. Since G ⊂ GL(n) , this curve is simply a matrix h whose entries
hjk(t) are smooth functions of the parameter t. h(t) describes a curve in an n2

dimensional euclidean space.
Xh, the tangent to this curve is simply the matrix whose entries are the deriva-
tives at t = 0, h′jk(0). h′ does not need to in the group. For the constant matrix
g, the curve t 7−→ gh(t) will have for tangent vector at t = 0 to the matrix.

Lg∗Xh = gh′(0) = gXh (8)

For every
( x y

0 1

)
∈ A(1) we identify with (x, y) ∈ R2 and tangent vectors( dx

dt
dy
dt

0 0

)
we identify with (dxdt ,

dy
dt )T

which is the tangent vector (dxdt
∂
∂x ,

dy
dt

∂
∂y ).

We us left translate the vectors ∂
∂x and ∂

∂y at the identity e to the point to

(x, y)
Consider the curve

(
1+t 0

0

)
for ∂

∂x whose tangent at w is ∂
∂x . Let g be the

matrix
( x y

0 1

)
∈ A(1) then we have

Lg∗
∂

∂x
=

d

dt
(gh(t))t=0 =

(
x 0
0 0

)
(9)
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The left translate of ∂
∂x to (x, y) is X1 = x ∂

∂x

Constructing the left translate of ∂
∂y at (1, 0) to the point (x, y)

Lg∗
∂

∂x
=

d

dt
(gh(t))t=0 =

(
0 x
0 0

)
(10)

where now h(t) =
(

0 1+t
0 1

)
We can consider the dual basis for the left invariant vector fields σ1 and σ2.

The dual basis to x ∂
∂x and x ∂

∂y is σ1 = dx
x and σ2 = dy

x . Thus for A(1) the left
invariant area form or the left haar measure is

σ1 ∧ σ2 =
dx ∧ dy
x2

(11)

for any compact region U in A(1).
We also calculate the right translates in order to find the right invariant haar

measure

Rg∗
∂

∂x
=

d

dt
(h(t)g)t=0 =

(
x y
0 0

)
(12)

where is h(t) =
(

1+t 0
0 1

)
So the right translate is X̃1 = x ∂

∂x + y ∂
∂y . The same

calculation with h(t) =
(

0 1+t
0 1

)
gives ∂

∂y . This gives the dual bases to be σ1 =

1
2

(
1
xdx+ 1

ydy
)

and σ2 = dy and therefore the right invariant haar measure

σ1 ∧ σ2 =
1

2

(
1

x
dx ∧ dy

)
(13)

2.1 One Parameter Subgroups

A one parameter subgroup of G is by definition a differential homomorphism
( in particular, a path)

g : R→ G

such that
t 7−→ g(t) ∈ G

Or the additive group of the reals in to the group G. Thus g(s+t) = g(s)g(t).
So gij(t + s) =

∑
k gik(t)gkj(s). Differentiating both sides with respect to s

and putting s=0 gives g′(t) = g(t)g′(0) where g′(0) is a constant matrix. The
solution to this is g(t) = g(0)exp{tg′(0)}. If G is not a matrix group this is
okay because the differential equation is really saying g′(t) = Lg(t)∗g

′(0) i.e the
tangent vector X to the 1-parameter subgroup is the left translated along the
group. So given a tangent vector Xe at e in G, the 1-parameter subgroup of G
whose tangent at e is Xe is the integral curve through e of the vector field X on
G resulting from left translation of Xe over all of G.

For A(1) to find the 1-parameter subgroup having tangent vector (a, b)T

at the identity, we left translate this vector over A(1). The left translate of
(a ∂
∂x + b ∂∂y ). So we solve
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dx

dt
=ax

dy

dt
=bx x(0)=1, y(0)=1

The solutions are x(t) = eat, y(t) = beat−b
a so that we have(

eat beat−b
a

0 1

)
(14)

3 Matrix Lie Groups

Definition Matrix Lie group is any subgroup G of GL(n : C) with the
following property: If Am is any sequence of matrices in G, and Am converges
to some matrix A then either A ∈ G, or A is not invertible.

3.1 Matrix Exponential

We state without proof the following results

Theorem 3.1 Let X be an n × n real or complex matrix X, the series eX =∑m=∞
m=0

Xm

m! converges.

Proposition 3.2 Let X and Y be n by n matrices, then the following are true:
1.e0 = I
2.(eX)∗ = eX

∗

3.eX is invertible and (eX)−1 = e−X .
4.e(α+β)X = eαXeβX for all α and β
5. If XY = Y X then eX+Y = eXeY

6.If Cis invertile then eCXC
−1

= CeXC−1

Proof Using theorem 4.3.1, 1 and 2 should be obvious. Point 3 and point 4
follow from point 5. So we proceed to prove it.

eX+Y =
∑
n=0

(X + Y )n

n!

=

∞∑
n=0

1

n!

m=n∑
m=0

(
n

m

)
XmY (n−m)

=
∑
n=0

1

n!

m=n∑
m=0

n!

m!(n−m)!
XmY (n−m)

=

n=∞∑
n=0

1

m!
Xm

m=n∑
m=0

1

(n−m)!
Y (n−m)

=eXeY
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Note the second step follows only because X and Y commute.
For point 6 we use theorem 4.3.1 on the left side.

eCXC
−1

=I + CXC−1 +
1

2
(CXC−1)2 +

1

3!
(CXC−1)3 . . .

=CC−1 + CXC−1 +
1

2
(CXC−1)2 +

1

3!
(CXC−1)3 . . .

=C

(
I +X +

1

2
(X)2 +

1

3!
(X)3 . . .

)
C−1

=CeXC−1�

For completeness sake we mention also that d
dte

tX = XetX .

3.1.1 Computing Matrix Exponential

It turns out there are three cases we need to consider when trying to com-
pute the matrix exponential, these are if the matrix is diagonalizable, if it is
nilpotent and lastly if it is arbitrary.

Case 1: Matrix is diagonalizable
Point 6 in the previous proposition offers a way of doing the calculation. We
first diagonalize the matrix, then apply the result of point 6. The reason this
helps is because computing the exponential of a diagonal matrix is highly trivial.
First note that a square diagonal matrix multiplied by itself n times is equal to
the diagonal entries raised to the n. Then applying the expansion of the series
to the diagonal matrix means we just get in the matrix the exponential of the
diagonal entries.

Case 2: Matrix is nilpotent A matrix M being nilpotent means that for
some n > 1,Mn = 0. This means that the series expansion is not infinite and
does in fact terminate.

Case 3: Matrix is arbtrary One use the SN decomposition first. It turns
out that any matrix can be written as a sum of a diagonalizable matrix S and
a nilpotent matrix N. Further more S and N commute. One can then use point
4 of the proposition to calculate the result.

A special case Sometimes it turns out that for some n > 1,Mn = M . In this
case it is far easier not to diagonalize but deal with the series expansion directly.
An example of this is calculate eiJy where Jy is the angular momentum in the
y direction of a spin 1 particle.

An important result often used in quantum physics and statistical mechanics
is the following

Theorem 3.3 Lie product formula. Let X and Y be n×n matrices that in
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general do not commute. Then

eX+Y = lim
m→∞

(
e

X
m e

Y
m

)m
(15)

Proof If we multiply the power series expansion of e
X
m e

y
m and keep only terms

linear in X and Y we get

e
X
m e

Y
m = I +

X

m
+
Y

m
+O

(
1

m2

)
For sufficiently large m in the domain of the logarithm we have

log
(
e

X
m e

Y
m

)
= log

(
I +

X

m
+
Y

m
+O

(
1

m2

))
If m is large we can say that

log
(
e

X
m e

Y
m

)
=
X

m
+
Y

m
+O

(
||X
m

+
Y

m
+

1

m2
||2
)

Taking the exponential of both sides gives

(
e

X
m e

Y
m

)
= exp

(
X

m
+
Y

m
+O

(
1

m2

))
(
e

X
m e

Y
m

)m
= exp

(
X + Y +O

(
1

m

))
By continuity of the exponential, the result follows as m goes to infinity

3.2 The nature of some Lie Algberas as viewed from Lie
groups

Lie algebras can of course be studied on their own and for their own sake as
was done in the previous chapter. We now approach lie algebras from the angle
of the lie groups.That is given a lie group what does its lie algebra look like.

3.2.1 Special Linear Group

It will be proved later on that det(eX) = etrX . This implies that if the
determinant of eX is 1 it must be that the trace of X is zero. Thus we arrive at
the statement that the lie algebra for special linear group has trace 0.

3.2.2 Unitary group

Recall that elements in the unitary groups are matrices such that U† = U−1.
This means that (eX)∗ = (eX)−1 = e−X = eX

∗
. We thus have that X∗ = −X

i.e the lie algebra for the unitary group is generated by anti-hermitian matrices.
For the special unitary group we have that the lie algebra is spanned by matrices
that have the additional property that they have trace being 0.
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3.2.3 Orthogonal groups

For these groups we have that OT = O−1. Thus (eX)T = ex
T

= (eX)−1 =
e−X . We therefore have the conclusion that the lie algebra for the orthogonal
is spanned by matrices X, with XT = −X. This condition forces the diagonal
entries to be zero and thus have trace being zero.

3.2.4 Generalized Orthogonal groups

There are denoted as O(n, k) and are (n+k)×(n+k) such that for a diagonal
matrix d AT dA = d for A ∈ O(n, k). D is a diagonal matrix with the first n
entries consisting of 1 and the last being -1. Similar arguments can be made to
show that the lie algebra consists of matrices such that dXT d = −X for X in
the lie algebra.

3.2.5 General properties of the Lie Algebra

If X is in the lie algebra g of the group G and A is in G then AetXA−1 is
in g for all t ∈ R. This follows trivially from proposition 4.3.2. We can show
that the commutator of two elements in the lie algebra is also in the lie algebra.
This was an assumption when we looked at lie algebras. Consider the following

d

dt
etXY e−tX = XetXY e−tX − etXY Xe−tX

Now evaluate the above expression at t=0. To get XY - YX. Now etXY e−tX ∈
g for all t. This can be deduced from the comments in the first paragraph of this
subsection and we know from that the lie algebra is a real subspace of M(C)
and in particular it is a topological closed subset, it therefore follows that

XY − Y X = lim
h→0

ehXY e−hX − Y
h

belongs in g

Theorem 3.4 Suppose we have a lie group homomorphism Φ from the groups
G to H. We can show that there is lie algebra homomorphism φ attached with
it.

We sketch the proof as follows.

Proof Since Φ is a continuous lie group homomorphism, we know that Φ(etX)
is a one parameter subgroup for each X in the g.. So this means there is a
unique element in H which write as etZ . We now claim there is a map φ such
that φ(X) = Z and we show that is has all the properties of a lie algebra
homomorphism.

1. By definition we have Φ(eX) = eφ(X)

2.Check that φ(tX) = tφ(X)
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3. By 1 and 2 we have etφ(X+Y ) = eφ(t(X+Y )) = Φ(et(X+Y ))
4.Use the Lie product formula to show that Φ(et(X+Y )) = et(φ(X)+φ(Y ). The
differentiate the result and evaluate at 0 to get φ(X + Y ) = φ(X) + φ(Y )

5.By 1 and 2 we have etφ(AXA−1) = eφ(tAXA−1) = Φ(etAXA
−1). Use the fact

that Φ is a homomorphism to get Φ(etAXA
−1) = Φ(A)etφ(X)Φ(A−1).

6. Recall that [X,Y] = d
dte

tXY e−tX |t=0. Apply the φ to both sides and use step
5 to get the result that φ([X,Y ]) = [φ(X), φ(Y )] �

Carrying out all the steps in the sketch laid out gives the result we want.
Now we note that the determinant is lie group homomorphism and the trace is
a lie algebra homomorphism. We thus have the result that det(eX) = etrX .

3.2.6 The Adjoint map

Definition (The adjoint map). Let G be a matrix Lie group, with lie algebra
g. Then for each A ∈ G we define the linear map AdA : g → g such that
AdA(X) = AXA−1

Theorem 3.5 Let G be a matrix Lie Group with lie algebra g. Let GL(g) denote
the group of all invertible linear transformation of g. The for each A ∈ G,AdA
is an invertible linear transformation of g with inverse AdA−1 and the map A→
AdA is a group homomorphism of G into GL(g) and satisfies AdA([X,Y ]) =
[AdA(X), AdA(Y )]

Proof It should be easy to see that AdA−1 is the inverse of AdA. It should be
easy to check that AdAB = AdAAdB .

AdA([X,Y ]) =A(XY )A−1 −A(Y X)A−1

=A(XA−1AY )A−1 −A(Y A−1AX)A−1

=(AdA([X,Y ])

=[AdA(X), AdA(Y )]

By theorem 4.3.4 we know there is a lie algebra homomorphism from the
lie algebra to the linear algebra of linear transformation acting on the lie alge-
bra, which we denote as ad and defined such that ad : g → gl(g). This was
defined earlier in the context of lie algebras but we now show it follows from
the lie group homomorphism. We can see this by considering the following
adX = d

dtAdetX |t=0(Y ) = d
dte

tXY e−tX |t=0. But we have already carried out
this calculation we know the result is [X,Y].

From this we can prove a highly no trivial result. Consider eadX (Y ) = AdeX (Y ) =
eXY e−X . So we have that (eadX (Y ) = eXY e−X

4 Baker-Campbell Hausdorff Formula

The main purpose of the Baker-Campbell Hausdorff formula(BCH) is it
shows that if φ is a lie algebra homomorphism from lie algebras g → h then
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if there is a map between groups G and H Φ : G → H with lie algebras g → h
respectively with Φ(eX) = eφ(X) then Φ is a lie group homomorphism. It accom-
plishes this task by expressing the product of two lie group elements in terms
of the lie bracket of the lie algebra.

The Baker-Campbell Hausdorff formula says

log(eXeY ) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

2
[Y, [X,Y ]] + . . . (16)

Now apply the lie algebra homomorphism φ to 4.9 we have

φ(log(eXeY )) =φ(X) + φ(Y ) +
1

2
[φ(X), φ(Y )] +

1

12
[φ(X), [φ(X), φ(Y )]]−

1

2
[φ(Y ), [φ(X), φ(Y )]] + . . .

=log(eφ(X)eφ(Y ))

Since we have that eXeY = elog(e
XeY ) then we have Φ(eXeY ) = eφ(log(eXeY ))

then applying (BCH) we have that Φ(eXeY ) = Φ(eX)Φ(eY ) , thus making Φ a
lie group homomorphism.

Note: BCH holds for sufficiently small X and Y.
Let g(z) = logz

1− 1
z

for some complex number z. This function is defined and

analytic in the disk |Z − 1| < 1 and can be expressed as the laurent series
g(z) =

∑m=∞
m=0 am(z − 1)m. For a finite dimensional vector space V and an

operator A on V the for ||A− I|| < 1 we can define g(A) =
∑m=∞
m=0 am(A− I)m.

There is an integral version of BCH and it is the following

log(eXeY ) = X +

∫ 1

0

g(eadXetadY )(Y )dt (17)

Again the result holds for sufficiently small ||X||, ||Y || and X, Y n × n ma-
trices.

4.1 Derivative of the Exponential Map

Before we deal with BCH we look at the derivative of the exponential
map. Note that if X and Y commute then eX+tY = eXetY and calculating
d
dt (e

X+tY |t=0) is trivial to calculate. But if they do not commute then the
derivative is highly non-trivial to calculate.

Theorem 4.1 Let X and Y be n× n complex matrices. Then,

d

dt
eX+tY |t=0 = eX{I − e

−adX

adX
(Y )} (18)

and more generally

d

dt
eX(t) = eX(t){I − e

−adx(t)

adX(t)
(
dX

dt
)} (19)
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Proof Define ∆(X,Y ) = d
dte

X+tY |t=0 and note that

eX+tY =
(
e

X
m + tY

m

)m
(20)

Now if differentiate 4.20 with respect to t and evaluate the expression at
t=0. We will get m terms and in each term there will be one factor that has
the derivative and the others will not. Once we evaluate the expressions at t=0
a generic terms will look like this

(eX/m)n
(
d

dt
eX/m+tY/m|t=0

)
(eX/m)k (21)

where n+ k = m− 1
Thus we have

d

dt
eX+tY |t=0 =

m−1∑
k=0

(
e

X
m

)m−k−1
(
d

dt
eX/m+tY/m|t=0

)(
e

X
m

)k
=e(m−1)/mX

m−1∑
k=0

e( −X
m )k∆(X/m, Y/m)e( X

m )k

=e(m−1)/mX 1

m

m−1∑
k=0

(
e

−ad
m

)k
(∆ (X/m, Y ))

Linearity of ∆(X,Y ) was used in the last step. The above expression is true
for all m and in particular true as m → ∞, we have that ∆(0, Y ) = Y In the
limit as m goes to infinity we are left with studying

1

m

m−1∑
k=0

(
e−

−adX
m

)k
(22)

We proceed with a non-rigorous argument by pretending the summand is a
number rather than an operator and apply the geometric series formula. This is
ultimately okay because we are dealing with operators with small enough norms.
So we have

1

m

m−1∑
k=0

(
e−

−adX
m

)k
=

1

m

1− e−adX
1− e−adX/m

(23)

and as m goes to infinity we have 1−e−adX

adX
�

We now turn to the proof the Baker Campbell Hausdorff formula.

4.2 Proof of Baker Campbell Hausdorff Formula

Define Z(t) = log(eXetY ) with t between 0 and 1. We need to compute
Z(1). We have that

e−Z(t) d

dt
eZ(t) =

(
eXetY

)−1
eXetY Y = Y

13



One the other hand we have just shown that

e−Z(t) d

dt
eZ(t) =

I − e−adZ(t)

adZ(t)

(
dZ

dt

)
So we have

I − e−adZ(t)

adZ(t)

(
dZ

dt

)
= Y

X and Y are small so we can invert the formula to get

dZ

dt
=

(
I − e−adZ(t)

adZ(t)

)−1

(Y ) (24)

By the Ad homomorphism and the relation between ”Ad” and ”ad” we have
eadZ(t) = eadXeadY or adZ(t) = log

(
eadXeadY

)
. Plugging these results into 4.17

we have
dZ

dt
=

(
I − eadXeadY )

log (eadXeadY )

)−1

(Y ) (25)

Remember before we defined the function g(z) =
(

1−z−1

logz

)−1

. Applying this

to 4.18 we have

dZ

dt
= g(eadXeadY )(Y ) (26)

Note that Z(0)=X and integrating we get

Z(1) = X +

∫ 1

0

g(eadXetadY )(Y )dt (27)

which is what we want.
We can make connection with the series representation of BCH in the fol-

lowing manner:
The closed form of the expression for the series expansion of g is

g(z) = 1 +

∞∑
m=1

(−1)m+1

m(m+ 1)
(z − 1)m

we first deal with the term (Z-1)

eadXetadY −I = adX+tadY +tadxadY +
(adX)2

2
+t2

(adY )2

2
+t2

(adY )2

2
+. . . (28)

so we have

14



g(eadXetadY ) =I +
1

2

(
adX + tadY + tadXadY +

(adX)2

2
+ t2

(adY )2

2
+ t2

(adY )2

2
+ . . .

)
− 1

6
(adX + tadY + . . . )

2
+ . . .

We then have (neglecting high order terms)

log(eXeY ) =X +

∫ 1

0

[
Y +

1

2
[X,Y ] +

1

4
[X, [X,Y ]]− 1

6
[X, [X,Y ]]− t

6
[Y, [X,Y ]]

]
dt

(29)

=X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, []X,Y ] + high order terms

(30)
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