On the way to study Lie groups and their representations we make a short
detour into the study of lie algebras.

1 Introduction

Let F be a field. A Lie Algebra over F is a a F-vector space K, together with
a bilinear map, the lie bracket :

LxL—L (z,y) — [2,] (1)

satisfying the following properties

o [xx] =0foralzel

o .[x[v,z]] + [y.[z.x]] + [z,[x,y]]=0 for all z,y,z € L

Some examples of lie algebras

1. Let F = R. The vector product (x,y) — x Ay

2. Any vector space V has a lie bracket defined by [x,y]=0 for all z,y € V

3. Set of all linear maps from V — V. This is a vector space over F known
as the general linear algebra [x,y] = xoy—youx for all x, y € gl(V) where
o denote the composition of maps

2 Subalgebras and Ideals

Lie Subalgebra of L is a vector space K C L such that [x,y] € K for all x,y
€ K.

Ideal of a lie algebra L is a subspace I of L such that [x,y]€ I for all x € T
andy € L

An important example of an ideal is the centre of L defined by
Z(Ly={x€L:[z,y=0foralye L}

We also have a notion of a homomorphism. A Lie Homomorphism is defined
as the map ¢ : L1 — Lo such that

o([2,9]) = [o(2), o(y)] (2)

An important example of Lie homomorphism will be the adjoint homomorphism
defined as such

ad : L = gl(L) by (adz)(y) = [z, y] (3)

If ¢ : L1 — Lo is a homomorphism, then ker(¢) is an ideal of L; and the
image of ¢, im(¢), is a lie subalgebra of Ly because if z,y € L1 and z,y € ker(¢)
then ¢([z,y]) = [#(x), d(y)] = 0. ¢(z) = ¢(y) = 0.

Now let there be an element z € L then ¢([z,y]) = [¢(2), ¢(y)] = 0. So kere is
an ideal of L.



3 Ideals and Homomorphisms

Ideals play a similar role that normal subgroups play in group theory. In
other words we can use ideals to construct other types of lie algebras in the same
way that we used normal subgroups to construct quotient groups. Suppose I
and J are ideals of a lie algebra L, Then the following are true:

1. I J is an ideal, since we already we that I()J is a subspace of L. So we
need to check that for z € L and y € L, [z,y] € I[)J, but the result follows
quickly since I and J are both independently ideals of L.

22 1+J={z+y:ze€l,yec J}isanideal. Let z € L, consider [z,(x+y)] =
[z,x] + [z,y] =a+bwitha € J and b € J. Soa+b € I+J making I +J an ideal.

3. Product of ideals, [I,J] : Span {[z,y] : @ € I,y € J} is an ideal. To prove
we start with the Jacobi Identity. [u, [z,y]] + [z, [y, u]] + [y, [u,z]] = 0 =
[w,[z,y]] = [z, [w,y]] + [[u,z],yle € I,y € Jandu € L. So [u,y] € J since J
is an ideal therefore [z, [u,y]] € [I,J] by the definition, similar argument ap-
plies for [[u, z],y]. Now a general element,t, of [I,J] is a linear combination i.e
t =Y c¢i[xi, yi] where ¢; are scalars from the field and z; € I,y; € J. Now pick
and element v € L and consider [u,t] = [u, > ¢i[zi, yi]] = Y ¢ifu, [zi, y5]]. But
[w, [, yi]] € [I,J] and so the sum is . So in summary we have that [u,t] € [, J]

A special construction occurs if we take I=J=L. We write [L,L] = L’ and
call it the derived algebra of L.

4 Quotient Algebras

We may consider the cosets of the ideal defined as follows z + I = {z + z :
x € I} for z € L so the quotient vector space is L/I = {z+ I : z € L}. The lie
bracket on L/T may be defined by [w+1, z+J] := [w, z]+ I for w,z € L. The lie
bracket above is bilinear i.e [w+1, (u+1I)+(v+1)] = [w+ I, u+I]+[w+I,v+1]
and [w+I,(u+ 1)+ (v+1)] = [w,u] + I+ [w,u]+ I. Same argument applies for
the left side. We also have that [w+ I, w+I] = [w,w]|+1I = I . Jacobi Identity
is also is satisfied i.e :

[u+I, v+ Lw+ I+ [(v+I),[(w+I),(u+ D]+ [(w+I),[(u+1),(v+ I)] =
(w4 1), [v,w]+ I+ [(v+ 1), [w,u] + I]+ [(w+ I), [u,v

[, [v,w]] + T + [v, [w,u]] + T + [w, [u

[u, [v, w]] + [v, [w,u]] + [w, [u,v]] + T =

We can motivate why we consider the cosets of ideals rather than any old
sub-algebra. The main motivation is that we want the lie bracket defined on the
quotient algebra to be well-defined in other words we do not want the answer
to depend on the representative of the coset we chose. Consider the following:
We have defined [z + I,y + I] to be [x,y] + I. But suppose we choose another



representative for each coset and perform the bracket i.e [(z+7) + I, (y + k) +
I] for j, k € I, we still want the answer to be [z, y]+1 since © and z+j,y and y+
k are in the same cosets respectively. We now do the computation

(z+)+L(y+k)+1=[=+]),y+k)]+T
= [z, yl + [4,y] + [@, k] + [, k] + 1

It should be clear that the last commutator is in I and just the first commu-
tator is the result we want. It then follows that [y, j], [z, k] € I but this makes
I an ideal.

We now see the analogue of the three isomorphism theorems we saw for
groups in the context of lie algebras.

4.1 Isomorphism Theorems

1. Let ¢ : L1 — Lo be a homomorphism of Lie algebras. Then ker¢ is an
ideal of L; and im¢ is a subalgebra of Ly and Ly /ker¢ ~ im¢

2. If T and J are ideals of a lie algebra, then (I + J)/J ~I/(I(J)

3. Suppose that I and J are ideals of a lie algebra L such that I C J. Then
J/1is an ideal of L/T and (L/I)/(J/I) ~ L/J

5 Solvable Lie Algebras

We take an ideal of I of a lie algebra L and ask when the factor or quotient
algebra L/I is abelian.

Lemma 5.1 Suppose I is an ideal of L. Then L/I is abelian iff I contains the
derived algebra L

Proof The algebra L/I is abelian iff for all x,y € L we have [x+I, y+I]= [x,y]
+I=Tor Va,y € L we have [z,y] € I. Since I is a subspace of L, this holds iff
the space spanned by the brackets [x,y] is contained in I, L'CI.

This argument says that the derived algebra L' is the smallest ideal of L that
has an abelian quotient. By the same argument then derived algebra L' has a
smallest ideal whose quotient is abelian. We denote this smaller derived algebra
as L(?). The argument goes on iteratively. We can define the derived series of L
to be the series with the terms L(Y) = L' and L®*) = [L*=1 L¢+=1] Then L D
LOD>L@ > B .

Definition The lie algebra L is said to be solvable if for some m > 1 we have



As a consequence the Heisenberg algebra is solvable but sl(2, C) is not solv-
able.

If L is solvable, then the derived series of L provides us with an ”approxi-
mation” of L. by a finite series of ideals with abelian quotients. This works the
other way round.

Lemma 5.2 If L is a lie algebra with ideals L =1y D11 D I3 D I3... 1,1 2
I, =0 such that I,—1 /1) is abelian for 11 < k < m, then L is solvable.

Proof Key idea: Show that L(*) is contained in Ij for k between 1 and m.
Putting k=m will then give L("™) = 0. L/I; is abelian, we know that L'crh
For the inductive step, we suppose L(*~1) C I;,_; where k > 2. By construction
I;.—1/I}; is abelian, this means that [I;_1,I;—1] must be contained in Ij(By
Lemma 3.5.1). But L®*~Y is contained in I;_; by our inductive hypothesis
so we deduce that L(*®) = [L*=1 L(*k=D] C [I,_, I;_;] and hence L) C I,.
QED

This proves that if L(*) is non-zero then Ij is also non-zero. Hence the de-
rived series may be thought of as the fastest descending series whose successive
quotients are abelian.

Lie algebra homomorphism are linear maps that preserve Lie Brackets, and
so one would expect that they preserve the derived series. Suppose that ¢ : L1 —
L is a surjective homomorphism of a lie algebras show that ¢(Lgk)) = (Ly)™),
we proceed by induction on k. We already have that ¢(L;) = Lo.

So ¢([L1, L1]) = [¢(L1), #(L1)] by the property of homomorphisms and by
assumption we now have that [¢(Ly), ¢(L1)] = [La, L] .. we have that ¢ : L} —

L. The inductive step is to assume that qb(Lgk_l)) = (Lék_l)) and consider the

derived algebra of L™ . g([L¥V, LEY)) = [o(LFV), (L)) This
is equal to [L(Qk_l), Lék_l)] by the inductive step. Our desired result therefore
follows since ¢([L¥™, LDy = p(Lk) = LYY, LEFV] = (L,)*. QED.

It turns out that if L is a lie algebra then

1. if LL solvable, then every subalgebra and every homomorphic image of L is
solvable

2. Suppose that L has an ideal I such that I and L/I are solvable. Then L is
solvable.

3. If I and J are solvable ideals of L then I+J is a solvable ideal of L.

Theorem 5.3 Let L be a finite dimensional Lie algebra. There is a unique
solvable ideal of L containing every solvable ideal of L.

Proof Let R be a solvable ideal of the largest possible dimension. We know
that if I and J are solvable ideals then I4J is solvable. Let I be a solvable ideal.
We have that R+1 as solvable this means that R C R+ and therefore dim(R) <
dim(R+I). But we chose R to have the largest possible dimension and therefore
dim(R)= dim(R+I) and hence R = R+Iso I C R. The largest solvable ideal is
called the radical of L and is denoted as rad L QED.



The notion of a radical of L suggests the following definition.

Definition A non-zero finite dimensional Lie Algebra L is said to be semisimple
if it has no nonzero solvable ideals for equivalently rad L =0.

An example is s1(2,C) has non-trivial ideals so it is semisimple. If L is a
lie algebra, then the factor algebra L/(rad L) is semisimple. This makes sense
since rad +L is the unique solvable ideal that contains all other solvable ideals.
Therefore if we mod out by that we are left with a factor algebra that has no
non-zero solvable ideals.

6 Some Representation Theory

Purpose : Examine the ways in which an abstract Lie Algebra can be viewed
concretely as a subalgebra of the endomorphism algebra of a finite dimensional
vector space.

Definition Let L be a lie algebra over a field F. A representation of L is a lie
algebra homomorphism ¢ : L — gl(V) where V is a finite dimensional vector
space over F.

Suppose ¢ : L — gl(V) is a representation. The image of ¢ is a lie subalgbera
of gl(V') and the kernel of ¢ is an ideal of L.

Thus in general we loose some information when we work with ¢. But when
the kernel is zero then the map is one to one and information is not lost. The
representation is then said to be faithful.

Examples:
1. ad: L — gl(L) : (ady)y = [z,y] . This provides a representation of L with
V=L. This is known as the adjoint representation. The kernel of the adjoint
representation is Z(L). Hence the adjoint representation is faithful when the
center of L is zero.
Consider the adjoint representation of s1(2, C') . Show that with respect to basis

(h,e,f) ady, is the matrix (§ % 82)
The basis for sl(2,C) ise = (3§),f = (99),h = (§ °) and note the fol-

lowing commutation relations [h, f] = —f, [h, e] = 2e, [e, f] = h. From these the
result follows.

2. Suppose that L is a lie subalgebra of gl(V'). The inclusion map L — gl(V)
is trivially a lie algebra homomorphism. The corresponding representation is
knows as the natural representation

3. Every Lie algebra has a trivial representation. To define this representa-
tion, take V=F and define ¢ =0 for all x € L



6.1 Modules for Lie Algebras

Suppose that L is a lie algebra over a field F. A lie module for L, or alter-
natively an L-module is a finite dimensional F-vector space V together with a
map

LxV >V (z,v) — 2w (4)

satisfying the conditions

1. (Az + py) = AM(zw) + p(y.v)

2. x.(Au+ pw) = AMz.u) + p(z.w)
3. [z, y].v = z(y.v) — y.(z.v)

Ve,y € Liv,w eV and \,u € F

The first and second properties imply that the map (z,v) — x.v is a bilinear
map and the second implies that the map v — (z.v) is a linear endomorphism
of V, so elements of L. act on V by linear maps.

6.2 Submodules and Factor Modules

Suppose that V is a lie module for the Lie Algebra L. A submodule of V
is a subspace of W of V which is invariant under the action of L. i.e for each
x € Lyw € W, we have z.w € W. In the language of representation, submod-
ules are known as sub-representations.

Examples:
1. Let L be a lie algebra, we may make L into an L-module via the adjoint
representation. The submodules of L are exactly the ideals of L.

Proof x € L,y € L, our map L xV — V will be defined here as L x L. — L and
will be the lie bracket. L is playing both the role of a lie algebra and a vector
space so that (z,y) — [z,y] € L by (ad,)y. The subspaces that are invariant
under this map are the ideals

2. Let L = b(n, F) be the lie algebra of n x n upper triangular matrices and
let V be the natural L-module, so by definition V' = F™ and the action of L is
given by applying matrices to column vectors. Let e1,es...e, be the standard
basis for F. For 1 < r < n. Let W,. = span{ey,...e,}, W, is a submodule of V.

3. L — complex solvable Lie algebra. Suppose ¢ : L — gl(V) is a rep-
resentation of L. As ¢ is a homomorphism, im¢ is a solvable sub-algebra of
gl(V) = V has a one dimensional sub-representation.

Suppose that W is a submodule of the L-module V. We can give the quotient
vector space V/W the structure of an L-module by setting

z.(v+W):=(zv)+ W forzre LandveV



We call this module the quotient or factor module V/W. For an example of
a quotient module, suppose I is an ideal of the Lie Algebra L. The factor module
L/I becomes an L-module via

z.(y+1):=(ady)y+1=z,y]+1

Looking at it differently, L/I is a lie algbera with Lie bracket given by [z +
I,y+1I] = [z,y]+I. So regarded as a L/I-module, the factor module L/I is the
adjoint representation of L/T on itself.

6.2.1 L-module Homomorphisms

Let L be a lie algebra and let V, W be L-modules. An L-module homomor-
phism from V' — W is a linear map 6 : V' — W such that 0(z.v) = x.0(v), Vv €
V,x € L.

Let ¢y : L — gl(V) and ¢w : L — gl(W) be representation corresponding
to V and W. In the language of representation theory, the condition becomes
0o ¢y = ¢w o 0. Because we have vector spaces and homomorphisms lying
around there also analogues for the three isomorphism theorems for lie modules.

Concretely, we can give an example. Suppose we have a one dimensional
abelian lie algebra L, spanned by x. We can find a representation for it f €
gl(V). But suppose we find another representation of it ¢ € gl(W) and we
further suppose that there is a homomorphism 6 from V to W. If this homo-
morphism turns out to be an isomorphism then we know from the way lie module
homomorphisms work that f and g will be equivalent iff 8 f = gf. An explicit
example is diagonalizing a matrix.

6.2.2 Schur’s Lemma

A lie module V is said to be irreducible, or simple, it it is non-zero and t has
no sub-modules other than {0} and V. The L-module V is completely reducible
if it can be written as a direct sum of irreducible L-modules; i,e V =S, @ Sa ... P Sk
where each S; is an irreducible L-module. Suppose that S and J are irreducible
Lie modules and that 6 : S — T is a non-zero sub-module homomorphism. Then
tm# = J. Similarly ker 6 is a proper sub-module of S, so ker § = 0.1t follows that
0 is an isomorphism from S to J, so there are no non-zero homomorphisms be-
tween non-isomorphic irreducible modules. We now consider a homomorphism
from a lie-module to itself.

Theorem 6.1 (Schur’s Lemma:) Let L be a complex Lie algebra and let S
be a finite-dimensional irreducible L-module. A map 6 : S — S is an L-module
homomorphism iff 0 is a scalar multiple of the identity transformation i.e 0 = A1
for some A € C

Proof "If” direction is simple. The ”only if” direction is non-trivial. Suppose
f:S — Sis a L-module homomorphism, then € is a linear map of a complex



vector space, and so it must have an eigenvalue, say A\. Now 6 — A is also L-
module homomorphism. The kernel of this map contains the A— eigenvector for
0, and so it is a non-zero submodule of S. As S is irreducible, S = ker(6 — AI);
that is 6 = A\I

7 The representation theory of sl1(2,C)

In this section we concentrate on the representation theory of sl(2,C) be-
cause it lays out the ground work and the basic ideas for the representation
theory of semi-simple groups in general but from a physics point of view it can
be used to study the representation theory of SU(2) which is used to study
angular momentum.

For our discussion we use the following basis introduced earlier: e = (3 3), f =
(99).,h = (§°) We are going to construct irreducible representations of
s1(2,C) by considering the vector space of polynomials in two variables XY
with complex coefficients, C[X,Y]. Let V; be a particular subspace consist-
ing of homogeneous polynomials i.e for each integer d > 0, let V; consist of
polynomials in X and Y of degree d. So,

1. Vi — one dimensional constant polynomials

2. V4 = d+1 (d > 0) dimensional has the following monomials as a basis
{xd Xd-ly . . Xyd-l yd}

We make V; into a sl(2, C')-module by specifying a lie algebra homomorphism
¢ :s1(2,C) — gl(Vy)

0

o(e) = Xa—y

0

o(f) = Yox

0 0

o) =X ~ Yoy

Note that ¢(h)(X2Y?) = (a — b)X*Y? so ¢(h) acts diagonally on V; with
respect to our chosen basis.

Theorem 7.1 ¢ is a representation of sl(2,C)

Proof By construction it is linear all we have to check is that it obeys the
commutation relations.

We show [¢(e), o(f)] = é([e, f1) = o(h)

[6(€), SNIXY = g(e)o( )XY~

XYba(b+1) — X*Y(a+1)b = X*Y(a(b+ 1) — (a + 1)b) = X*Y?(a —b) =
#(h)Xay?

) ( )Xayb _ ¢(e)yb+1Xa71a_¢(f)Xa+lyb71b _



We check action of X¢
[6(e), p(NIXT) = p(e)p(F) X = d(f)p(e) X! = ¢(e)dX ™Y — ¢(f)(0) = dX*
)—

(f (f)
T i s
R A e
o(e)((a — b)X“Yb) b((a+1) — (b — 1) X*HYP"t — (a — b)pX2FLYP1 =
2bXa+1yb
This is the same as 2 ¢(e)(X?Y?).Separate verification is needed for b=0
and a=d. Same can be done for [¢p(h), d(f)] = —2¢(f) O

There is also a matrix representation in the basis X¢, X4~1Y, ... of V¢

01 0 ... 0
0 0 2
o = ¢(e)
o d
0 0 O 0
0 0 0 0
d 0 0 O
0 d-1 0 =a(f)
0
0 0O 1 0
d 0.. 0 0 0
0 d—2 0 0
S : 0 0o | =9oh)
0 0 .. —d+2 0
0 0 0 —d

A s1(2, O) -submodule of V¢ generated by any particular basis element XY
contains all the basis elements and so is all of V¢, this can be proved.

Theorem 7.2 The sl(2, C)module V? is irreducible

Proof Suppose U is a non-zero sl(2, C) -submodule of V4. Then h.u € U for
all u € U. Since h acts diagonalisably on V¢, it also acts diagonalisably on U so
there is an eigenvector of h which lies in U. All eigenspace of h on V¢ are one -
dim’l and each eigenspace is spanned by one monomial X*Y?, so the submodule
U must contain some monomial but by the above theorem contains all the bases
for V¢ and so U = V¢ [



7.0.1 Classifying the Irreducible s1(2,C) modules

Lemma 7.3 Suppose V is an sl(2,C) -module and v € V is an eigenvector of
h with eigenvalue A

i) Fither e.v = 0 or e.v is an eigenvector of h with eigenvalue A + 2

it) Fither fv=0 or f.v is an eigenvector of h with eigenvalue \ — 2

Proof V is a representation of sl(2, C), so we have h.(e.v) = e.(h.v) +[h,e].v =
e(A)v + 2e.v = (A + 2)e.w. The calculation for f.v follows similar steps. OJ

Lemma 7.4 Let V be a finite dimensional sl(2,C) module. Then V contains
an eigenvector w for h such that e.w =0

Proof Since C is an algebraically closed field, the linear map h : V. — V
has at least one eigenvalue and so at least one eigenvector. Let h.c = Awv.
Consider the vectors: v,e.v,e’v,e3v,.... If these vectors are no zero then by
the previous lemma we have an infinite sequence of h-eigenvectors with distinct
eigenvalues. Eigenvectors with distinct eigenvalues are linearly independent and
so V is infinite dimensional which is a contradiction since V is finite dimensional.
This means that there must be some kgeq0 such e*.v # 0 but e**1.v = 0. We

set w = e*.v then h.w = (A + 2k)w and e.w = 00

We now proceed to our main result, in which we will classify the irreducible
representations by creating an isomorphism with V¢ and its irreducible repre-
sentations.

Theorem 7.5 If V is finite-dimensional irreducible s1(2,C) module, the V is
isomorphic to one of the V¢

Proof Key idea: Produce a basis that spans V and then construct the isomor-

phism to V<.

Step 1

So by lemma 3.7.4 V has an h-eigenvector w such that e.w = 0.Suppose that
h.aw = Aw. So we consider the sequence of vectors w, fw, f2w, f3,w.... We

claim that there exists a d such that f%w # 0 but f%'w = 0. This follows by
the previous theorem. Now w, fw, f?w, fw form a subspace of V and since all
have distinct eigenvalues, it follows that they are linearly independent. By con-
struction this subspace is invariant under the action of h and f. We show that it
is invariant the action of e by induction i.e ef*w € span {fiw:0<i<k}="U.
Note that for £ = 0 we have that ew = 0, so for the indcutive step we note
that e(f*)w = (fe + h)(f*w. By the inductive hypothesis we have that
e(f*1) € U so feff¥lw € U and hf*~! € U. This finishes the inductive step.
Now V is irreducible so in fact U =V

Step 2

We now proceed to produce the isomorphism. We have that V is the span
of {w, fw,... flw} and V¢ has the basis {X¢, fX9, ... f4X?}. Notice that the
eigenvalue of h on f*w is the same eigenvalue of h ron f*X% The homomor-
phism which will later turn into an isomorphism must map h-eigenvectors to
h-eigenvectors. So define it to be
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Y(w) = X1
and then define ¢ by

G(fFw) = X (5)

This defines a vector space isomorphism which commutes with the action of
f and h. We need to show it commutes with the action of e. Again we proceed
by induction similar to that in step 1. So for & = 0 we have that ¢¥(ew) =
0 and ey)(w) = 0,eX? = 0. For the inductive step, ¥(effw) = ¥((fe +
R).(f*tw)) = fileff~tw) + hap(f*~1w) by the inductive step we can take
the e out and obtain (fe + h)Y(fF~1w) = efyr(fF1w) = e (ffw)0

Corollary 7.6 If Vis a finite-dimensional representation of sl(2,C) andw € V
is an h-eigenvector such that ew = 0 then hw = dw for some non-negative
integer d and the submodule of V generated by w is isomorphic to V¢

Proof To prove that the eigenvalue is d, remember that in our chosen basis h
is diagonal and therefore we can take the trace ie A+ A —2+ ... (A —2d) =
(d+1)A = (d+1)d. But remember that the trace of h is zero so the A = d. Now
apply step 2 to get the required results.

The vector considered in the corollary is known as the heighest weight vector
and its associated eigenvalue with respect to h is known as the highest weight.
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