
Let X and Y be vector fields on a manifold Mn and let φ(t) = φt be the
local flow generated by X. We compare the vector Yφtx at that point with the
results of pushing Yx to the point φtx means of the differential φt∗. The Lie
Derivative of Y with respect to X is defined as

[LXY ]x : lim
t→0

[
Yφtx − φt∗Yx

t
] (1)

Alternatively

[LXY ]x = lim
t→0

φ−t∗[
φt∗Yφtx − Yx

t
]

= lim
t→0

[
φ−t∗Yφt∗x − Yx

t
]

For second step we used φ0∗ is identity. We next use Hadamard’s Lemma
to get a very useful form for the Lie Derivative. We simply state but offer no
proof

Lemma 0.1 Hadamards’s Lemma: Let f be a continuously differentiable
function defined in a neighborhood U of x0. Then for sufficiently small t, there
is a function gt continuously differentiable in t and point x in U such that:

go(x) = Xx(f)

and
f(φtx) = f(x) + tgt(x)

Using this lemma we now find a better(more pleasing form) of the deriva-
tive. One might worry about whether the limit in the lie derivative exists but
Hadamard’s lemma takes care of that for us.

[LXY ](f)] = lim
t→0

[
Yφtx − φt∗Yx

t
](f)

= lim
t→0

[
Yφtx(f)− Yx(f ◦ φt)]

t

= lim
t→0

[
Yφtx(f)− Yx(f + tgt)]

t
by Hadamard’s lemma

= lim
t→0

[
Yφtx(f)− Yx(f)]

t
− lim
t→0

Yx(gt)

=Xx{Y (f)} − Yx(g0) definition of lie derivative

=Xx{Y (f)} − Yx{X(f)} by Hadamard’s Lemma

We therefore arrive at an agreeable expression namely

LxY = [X,Y ] (2)

The above is obviously the lie-bracket.
It is useful to develop the concept of the lie derivative from the concept of

lie transport which is a kind of flow of vector field. We take a step back on
concentrate on local flow of a vector field in order to introduce ‘lie’ flow.
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1 Local flow of a vector field

A vector field ”tears up” a manifold into a system of integral curves. If each
point p ∈ M moves a parametric distance t along ”its own” integral curve, we
get a map.

Φt : M →M P := γ(t0) 7−→ γ(t+ t0)

which is called the local flow generated by the field V. This map crucially
does not depend on the value of the parameter to which we assign to P. Why?

Suppose we have an integral curve γ(t) for vector field V. What is the most
general re-parametrization such that γ(σ(t)) is still an integral curve for V? We

know that γ̇ = V and ˆγ(σ(t)). We want
ˆ̇

γ(σ(t)) = γ̇ = V =⇒ ˙γ(σ(t)) ˙σ(t) =

γ̇ = V =⇒ ˙σ(t) = 1 and σ(t) =
∫
, dt =⇒ t+ c where c ∈ R

Now γ(0) = P ∈ M and the same integral curve starting at γ̂(a) = Q ∈ M
are the same integral curve for vector field V. From the above discussion we can
re-parametrize with σ(t) = t + a so γ(t + a) = γ̂(0) = γ(a) which we showed
earlier had the same vector field V. The flow Φt has a composition property
with respect to parameter t.

Φt+s = Φt ◦ Φs

We can prove this by using a re-parametrization we just proved was possible.
We know P := γ(t0) 7−→ γ(t0 + t + s). This is on the left hand side of our
composition property. On the right hand side we have Φt◦Φs = Φt(Φs(γ(t0))) =
Φt(γ(t0 + s)) = γ(t0 + t + s). Clearly both sides are equal. This map can be
thought of as

Φ : M ×R→M

(x, t) 7−→ Φt(x)

and the composition property looks like

(x, t+ s) 7−→ Φt+s(x)

If we have Φt : xi 7−→ xi(t;x) then V = ẋi(0;x)∂i. We consider an example
1. Consider ~r → eλt~r

r = xî+ yĵ + zk̂ 7−→ eλt(xî+ yĵ + zk̂)

V 1 = xλeλt∂x|t=0 = xλ∂x

V 2 = yλeλt∂y|t=0 = yλ∂y

V 3 = zλeλt∂z|t=0 = zλ∂z

so V = λ(x∂x + y∂y + z∂z)
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Fixed Points of the flow Φt (points on a manifold which do not move under
the maps Φt for all values of t ) coincide with zero points of the generating
vector fields V, i.e ( points p ∈ M such that Vp = 0 ) Why? V = ẋi(P0;x)∂x
for Φt : xi 7−→ xi(t;x). Since Vp = 0 we have that x̂i = 0 =⇒ xi = P0 where
P0 ∈ R since xi := xi(γ(t)) = xi(t) = P0 =⇒ ẋi = γ̇(γ(t)) = 0 =⇒ γ(t) is a
constant number and so there is no flow at P0.

The map φ : (R, t) → Diff(M), t 7−→ Φt is a homomorphism of groups.
Why? φ(t + s) = Φt+s and φ(t) ◦ φ(s) = Φt ◦ Φs. But this is the composition
property of the flow which we proved earlier. So indeed we can think of the φ
as a homomorphism.

Now if f : M → N is a diffeomorphism and Φt a flow on M then

a) ψt := f ◦ Φt ◦ f−1 is a flow on N. We can see this by considering the fol-
lowing: f−1 : N → M,y 7−→ f−1y, Φt : M → M,γ(f−1(y)) 7−→ γ(f−1(y) + t)
and lastly f : M → N, γ(f−1(y) + t) 7−→ γ(y + f(t))

b) On M Φt is generated by vector field V, V i = ẋi∂i. So with the map f,
we have Vγ(t) = V i(x(t))∂i 7−→ V i(y(t))∂f∂x

∂
∂y . So the flow ψt on N is generated

by f∗V
If f : M → M is a diffeomorphism and γ(t) and integral curve of a field V

which starts in x ∈ M . then the curve f(γ(t)) is the integral curve of the field
f∗V Why?

There is some field V’ so that df(γ(t))
dt = V ′ =⇒ df(γ(t))

dt |t=0 = V ′0 =

f∗(
d
dt |t=0γ) = f∗(γ̇) = f∗V since γ̇ = V

2 Lie Transport and Lie Derivative

Let V be a vector field on M and let Phit : M →M be the corresponding flow.
Since is a diffeomorphism, it induces the mapping (pull back ) of tensor fields
of arbitrary type on M.

Φ∗t : Tpq(M)→ Tpq(M)

This is known as lie . Note the fields are transported a parametric distance
t along the integral curves of the field V against the direction of the flow Φt.

Φt is a linear operator on Tpq(M) and (Φ∗ta)(U, . . . V ;α . . . β) = a(Φ∗U, . . . ,Φ∗V ; Φ∗−tα, . . .Φ
∗−tβ).

We look at an example with scalar functions

For Ψ on M, drawn in form of a point of a graph; i.e as a hypersurface
(x,Ψ(x)) ⊂M × R.

i) For M = R, V = ∂x,Ψ(x) = e−x
2

. What is Φ∗Ψ
First we find the integral curves of the vector field which are straight lines since
ẋ = 1. So ΦtΨ = Ψ ◦ Φt = e−(t+a)

2

. Note that the gaussian has been shifted
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backwards, against the direction of the flow.

ii) M = R2, V = −y∂x + x∂y,Ψ(x, y) = e−((x−2)
2+(y−3)2)

We solve for the integral curves first. One finds the solutions to be x(t) =

B cos t−A sin t, y(t) = A cos t+B sin t. Therefore Φ∗tΨ(x, y) = e−((B cos t−A sin t)−2)2−((A cos t+B sin t)−3)2

So in general the graph of a function Φ∗tΨ may be obtained from the graph
of Ψ simply by a shift of the former by a parameter t against the integral curves
of the field V.
Given Φt with vector field V, let γ(τ) be the integral curve of the field W. We
can justify the idea that the integral curves Γ(t) of the lie transported vector
field Φ∗tW are given simply as the Φ−t images of the initial curves γ(τ). Since
γ̇ = V for some integral curve γ. We need to find what Φ∗tW is, with the
requirement that the right handside is the derivative of the integral curve. We
note that Φ∗tW = Φ−tW because f∗W = f−1WThen we start with the following
expression, which is then differentiated:

Φ−t ◦ γ(τ) = Γ(τ)

d(Φ−t ◦ γ(τ))

dτ
=
dΓ(τ)

dτ

= Φ−t
dγ(τ)

dτ
=
dΓ(τ)

dτ

= Φ−tW =
dΓ(τ)

dτ
= Φ∗tW

We consider two electrostatic fields E1 = E∂x, E2 = k
r2 ∂r. We consider

other vector field generating 3 different flows in three dimensional euclidean
space namely, V = ∂x, U = ∂y,W = y∂x − x∂y.

What would the electrostatic fields look like after they were lie transported
along the vector fields V, U and W? From the previous discussion, the trans-
ported field lines of the transported vector fields would be the images of intial
field line under the map Φi−t with Φit being the flow resulting from the vector
fields V,U and W. The vector field lines of V are lines in the x direction, for
U they are lines in the y directions and W are circles about the origin. So E1

transported along V will give field lines shifted backward in x direction with
along pointing in x direction, transported along U gives the initial field lines
shifted downwards and transported along W gives field lines rotated clockwise
by some angle. The same story applies for E2.

It may happen that Φ∗tA = A the A is said to be invariant. This happened
above when E1 was transported by ∂x, ∂y and E2 by y∂x − x∂y. This need not
happen in general for an arbitrary tensor field A. A convenient measure of this
dependence is given by
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LVA :
d

dt
|t=0Φ∗tA (3)

This definition is equivalent to the one given in 3.1. It will be shown to give
the same results when applied to vector fields. It has the advantage that it is
completely self contained. Note LVA = 0 happens iff A is invariant with respect
to V.

2.1 Properties of the Lie Derivative

The lie derivative is a derivation of the tensor algebra which commutes wth
contractions.For ε << 1 we have

Φ∗εA = A+ ε
d

dt
Φ∗εA|t=0 +O(ε2)

= A+ εLVA+O(ε2)

1). On Functions

LV Ψ =
d

dt
Φ∗tA|t=0

=
d

dt
(Ψ ◦ x(t)) |t=0

=
dyj

dt
Ψ,j

∂xi

∂yj
|t=0

= J ijy
j∂jΨ

= VΨ

2. On Covectors which happen to be gradients of functions

LV (dΨ) =
d

dt
|t=0Ψ∗t dΨ

=
d

dt
dΨ ◦ Φt

= d
d

dt
|t=0Ψ ◦ Φt

= d
d

dt
Φ∗tΨ|t=0

= dLV Ψ = d(VΨ)

3. general co-vectors fields α = αi(x)dxi = ai ⊗ dxi
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LV (α) = LV (ai ⊗ dxi)
= LV (a) ⊗ dxi + ai ⊗ LV (dxi)

= V jαi,jdx
i + αid(LV xi)

= V jαi,jdx
i + αidV

i

=
(
V iαi,j + ajV

j
,i

)
dxi

4. on a co-ordinate frame field ∂i

LV < dxi, ∂k > =< LV (dxi), ∂k > + < dxi,LV (∂k) > (4)

0 = V i,j < dxj , ∂k > + < dxi,LV (∂k) > (5)

−V i,k = dxi(LV (∂k)) (6)

−V i,k∂i = LV (∂k) (7)

With the above calculations it is straight forward to calculate the lie deriva-
tive of a general tensor. So

LVAi...jk...l = V mAi...jk...l,m + V k,mA
i...j
m...l + . . . Ai...jk...mV

l
,m − V m,imA

m...j
k...l . . .−A

i...m
k...l V

m
,jm

(8)

In particular let us calculate the lie derivative of vector field.

LV (W ) = V mW j
,m∂j −W jV m,j ∂m

= V mW j
,m∂j −WmV j,m∂j

= (V mW j
,m −WmV j,m)∂j

= [V,W ]

The lie derivative has been expressed in terms of the pull back of the flow,
but the flow can also be expressed in terms of the lie derivative. How can this
be done?

dΦ∗t
dt

=
dΦt+s
ds
|s=0

= Φ∗t
d

ds
|s=0Φ∗s

= Φ∗tLV

The formal solution to the above O.D.E is Φ∗t = etLV . We now try a simple
calculation in the case when M = R[x], V = ∂x. Φ∗tΨ = etLV Ψ = Ψ(x) +

tLV (Ψ) + t2

2 LV (LV )Ψ + · · · = Ψ + tΨ′ + t2

2 Ψ′′ + · · · = Ψ(x+ t). Note we agree
with what we found when we applied the formal definition of lie transport to
scalar function. The function has been translated backwards against the flow.
Also if the flow is not defined globally then this formula is wanting.
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3 Isometries and Conformal transformation, Killing
Equations

Let γ be a curve on M, f a transformation of M(diffeomorphism f : M → M)
and γ̂ = f ◦ γ, the curve transformed by f . Denote by l[γ, g] the functional of
the length of a curve on a manifold (M,g). i.e

l[γ, g] :=

∫ t2

t1

dt
√
g(γ̇, γ̇)

For the transformed curve one obtains for the length the following equation
l[f ◦ γ, g] = l[γ, f∗g] Why? γ̇ 7−→ f∗γ̇ =⇒

√
g(γ̇, γ̇) 7−→

√
g(f∗γ̇, f∗γ̇) =√

f∗g(γ̇, γ̇)
If the length does not change then we demand that for f : M →M,f ∗g = g.

Such transformation are called Isometries. The isometries automatically pre-
serve angles under which arbitrary curves intersect. Why? Let 2 curves inter-
sect in x ∈ M at an angle α and let vectors v, w be tangent(of any length)
to the curves in x. Then under f we have x 7−→ f, v 7−→ f∗v, w 7−→ w

and cosα 7−→ cosα′ = cosα because cosα = g(v,w)√
g(v,v)

√
g(v,v)

and cosα′ =

g(f∗v,f∗w)√
g(f∗v,f∗v)

√
g(f∗v,f∗v)

= f∗g(v,w)√
f∗g(v,v)

√
f∗g(v,v)

= g(v,w)√
g(v,v)

√
g(v,v)

= cosα.

But from the above work we see that a weaker condition is possible to pre-
serve angles; namely if g is changed by a function.σ : M → R, i.ef∗g = σg.
Such transformations are called conformal transformation of a manifold. For
σ = constant we have homotheties and σ = 1 we have isometries.

Conformal transformations constitute a group because if f∗g = σg and h∗g =
σ′g for f, hM →M and σ, σ′M → R

(f ◦ h)∗g = (h∗ ◦ f∗)g = σσ′g

Obviously, homotheties are a subgroup and so are isometries.

A tool for finding all isometries which may be obtained by a smooth defor-
mation of the trivial isometry is

1. Find all infinitesimal isometries Φε : M → M . In co-ordinates xi 7−→
xi + εξi(x)

2. Obtain the finite maps by iterations of the infinitesimal ones. In this way
we get a whole one paramer group = flow of isometries Φt : M → M with the
generator of the flow being the vector field ξ = ξi(x)∂i

We now find the equations which specify ξ. Let Φt : M → M be a one-
parameter group(flow) of isometries, generated by a vector field ξ then we know
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Lξg = 0 . So we calculate the lie derivative of the metric tensor.

Lξ
(
gij(dx

i ⊗ dxi)
)

= ξkgij,kdx
i ⊗ dxj + gkjξ

i
,kdx

k ⊗ dxj + gikdx
i ⊗ ξj,kdx

k

= ξkgij,k + gkjξ
i
,k + gikξ

j
,k = 0

This is an over determined system we have n unknown functions ξ1(x), . . . ξn(x)

but we have n(n+1)
2 . Given two solutions ξ, η of the killing equation, then both

ξ + λη and [ξ, η] are solutions. The reason is that these vector fields form a

lie algebra. This lie algebra is of dimension at mostn(n+1)
2 . The fact that we

have a sub-algebra, we can use this concept to find new solutions by taking all
possible commutators. We do some examples next.

1. We find the killing vectors and corresponding flows for the euclidean
plane. ξ1(x, y) = A(x, y), ξ2(x, y) = B(x, y). We have gij = ( 1 0

0 1 )

0 = ξk,igkj + ξk,jgik

0 = ξ1,ig1j + ξ2,jg2k + ξ1,jgi1 + ξ2,jgi2

i = 1, j = 1

0 = ξ1,1g11 + ξ2,1g21 + ξ1,1g11 + ξ2,jg12 =⇒ ∂A

∂x
= 0

i = 1, j = 2

0 = ξ1,1g12 + ξ2,1g22 + ξ1,2gi1 + ξ2,2g12 =⇒ ∂B

∂x
= 0

i = 2, j = 1

0 = ξ1,2g11 + ξ2,2g21 + ξ1,1g21 + ξ2,1g22 =⇒ ∂A

∂x
+
∂B

∂x
= 0

i = 2, j = 2

0 = ξ1,2g12 + ξ2,2g22 + ξ1,2g21 + ξ2,2g22 =⇒ ∂B

∂x
= 0

All the above results imply A(x, y) → A(y), B(x, y) → B(y) and dA
dy =

−dBdx = constant. the solutions for A and B are A = −ky + x0, B = kx + y0.
So ξ = A∂x + B∂y = k(−y∂x + x∂y) + x0∂x + y0∂y. There are 3 independent
solutions: e1 = −y∂x + x∂y, e2 =. So ξ = A∂x + B∂y = k(−y∂x + x∂y) +
x0∂x, e3 = ∂y.

We could use the killing equations in another way. We guess the form of ξ
and solve for the most general gij that has these symmetries. This is used in
solving complicated PDE. This strategy holds for LA = 0 for a general tensor
field A.
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