
1 Introduction

In algebra we usually start with a set of objects and rules about how we
are to combine these objects. We define a binary operation on a set S to be a
function

α : S × S → S (1)

Note :Mathematicians represent maps between algebraic structures with the
→ but when they talk about maps between elements from one structure to an-
other they use 7−→

The act of combining two elements is done by some binary operation ? i.e a
? b. This symbol will take different forms whether we will dealing with abelian
groups i.e ”+” or non-abelian groups ”.”. The simplest structure we can have
before we arrive at groups is a semigroup, (S,?). S is assumed to be non empty
and the operation ? is assumed to be associative i.e (a ? b) ? c = a ?( b ? c).
If in turn the semigroup has an identity element , e, such that a ? e = a = e ?
a,then the semigroup is said to be a monoid. We then can add another level of
structure and demand that the set have an inverse element such that a?a−1 = e
for all a ∈ S. When this is accomplished we have arrived at a group.

In summary we have the following definition of a group:
A group is a set, G, such that the following axioms are satisfied

1. The binary operation is associative

2. There is an identity element in the set

3. Every element has an inverse

1.1 Examples

1.Consider the set of natural numbers, N. Supposing we exclude the number
0 from the set and have addition as our operation. Then we have a semigroup. If
we include the number 0 then we have our additive identity and now N becomes
a monoid. Note that the set of natural numbers can’t be a group whether we
choose addition or multiplication as our operation because if we choose addition
we need the negative numbers for our inverses(which we do not have) but also if
we choose multiplication as our operation 1 becomes the multiplicative identity
but we do not have fractions in the set by definition.

2. A non mathematical example of a semigroup is the ”renormalization
group” in macroscopic lossy systems. Because we are loosing variables the
operations need not have an inverse which means we need not have an identity
element.

3.Consider the rotation of a regular polygon in rotated about an axis per-
pendicular to its plane of rest by angles 2πk

n where n is the number of sides and
k is an integer less than n. The rotations form a group as we have the identity
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operation (namely do not rotate), inverse operation (rotate the other way ) and
clearly the rotations are associative

4.Supposing we have a set of n by n matrices with complex entries, Mn(C)
or with real entries Mn(R). We need to form a group out of them, but run into
an obstacle since not all matrices are invertible, in other words the inverses may
not exist. We therefore restrict our selves to those that do and we denote them
as GLn(C) or GLn(R)

5. Consider the set of continuous invertible functions on the reals with one
variable i.e f(x) which we denote as Fun(R) with the operation of multiplication.
These form a group.

1.2 Subgroups

It is often the case that when we have a set,S,that forms group we find out
that there is a subset, N, that also obeys the axioms of the group. We call
groups that arise from subsets that form groups, subgroups.

1.2.1 Examples and Motivations

1. The complex numbers C form a group but we can consider the real
numbers R as a subset by making the imaginary part zero. But the real numbers
form a group, so we can consider R as a subgroup of C.

2. Consider the complex numbers on the unit circle S i.e z = eiθ in the
complex plane. These form a group but can be thought of a subgroup of C

3. The set (Z,+) is a subset of the rational number with operation of
addition (Q,+)

Below is a proof that illustrates why considering a subgroup is important.

Theorem 1.1 The group Sn (the group formed by the permutation of n objects)
is abelian if and only if n ≤ 2

Proof We can directly prove that S1 and S2 are abelian. To do this let us

introduced notation: π=

(
a1 a2 a3 . . . an
b1 b2 b3 . . . bn

)
The above means that we have a permutation π that takes the element a1

to b1 and a2 to b2 and so on.

For a specific example consider π=

(
1 2 3 4 5
3 5 4 1 2

)
The above means we are dealing with the permutation of 5 objects with 1

permuted with 3, 3 permuted with 4 and 4 with 1. Meanwhile 2 is permuted
with 5. A short hand notation then is π = (134)(25). This permutation is just
one element in S5 that has 5! elements. The number of elements in a group is
called its order.

Now let us consider S2 which has elements π1=

(
1 2
1 2

)
and π2=

(
1 2
2 1

)
Clearly, π1 is the identity element that keeps the objects where they are. Let us
consider π1?π2, this gives π2. Now consider π2?π1, π2 exchanges the objects and

2



π1 leaves them as they are i.e π2 ? π1= π2. It should be clear that S1 is abelian
since it only has one element. Now let us consider S3 this has 6 elements (3!).
Let’s label them, π1 = (1)(2)(3), π2 = (12)(3), π3 = (13)(2), π4 = (123), π5 =
(1)(23), π6 = (132).

Now note that π2?π4 = π5 but π4?π2 = π3. In other words S3 is nonabelian.
Here now is the important point, S3 is a subgroup for Sn with n > 2. It is
impossible for a group to be abelian but one of its subgroups to be non-abelian
so Sn with n > 2 is non-abelian. QED

This in general can be a strategy for deciding whether a group is abelian
or not. Just pick a subgroup and investigate instead. Why? Subgroups are
smaller.

1.3 Maps between Groups

In order to motivate the topic let us learn about the cayley table or the group
multiplication table. This is a table that encodes how the group operation works
among the group elements. Let us consider the rotations of square about the z
axis by multiples of 90 degrees these form a group which we hence forth call R4

and the integers modulo 4 which we call Z4

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

* R(0) R(90) R(180) R(270)
R(0) R(0) R(90) R(180) R(270)
R(90) R(90) R(180) R(270) R(0)
R(180) R(270) R(0) R(90) R(180)
R(270) R(0) R(90) R(180) R(270)

Looking at the above table we see there is some sense in which these two
groups are the same. In fact if we make the function 0 → R(0), 1 → R(90) ,
2 → R(180), 3 → R(270) we see that although these are two different groups
their multiplication is identical. What we have found is called an isomorphism.

More formally a group isomorphism is a bijective function α : G→ H such
that

α(xy) = α(x)α(y) (2)

where x,y ∈ G. Note that multiplication on the left side is in G while multipli-
cation on the right is in H. This is important to note because the operations in
these two groups might not be the same as in our example above. The idea be-
hind this is that these groups are the same apart from labeling of the elements.
We denote this relationship as G ' H
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Let us suppose now that eq.2 still holds but that the map is no longer
bijective. For this, consider two groups Z the group of integers and Z3 the
integers modulo 3. Let α be the function α(x) = x mod 3 where x ∈ Z and
α(x) ∈ Z3. Clearly this is not a one to one map since all the multiples of 3 get
mapped to 0 in Z3 nevertheless this map still obeys eq.2. Thus any function
between two groups G and H that obeys eq.2 but is surjective (onto) is called a
homomorphism.

1.4 Manipulating Group Elements

The following relate to manipulating group elements:

Theorem 1.2 Let x, y, z be elements of G:
1 . if xy = z then x = zy−1

2 . (xy)−1 = y−1x−1

Proof If xy = z then (xy)y−1 = zy−1 ⇒ x = yz−1 by associativity. To prove
the second statement we show that y−1x−1 is the inverse of (xy). (xy)y−1x−1 =
1 and y−1x−1(xy) = 1

The next theorem relates the powers of groups

Theorem 1.3 Let x be an element of a group G, and m,n be integers
1. xmxn = xm+n

2. (xm)n = xmn

Proof We prove the first part by induction. Note that for m=n=1 we have that
xx = x2. We then assume the statement and then consider xmxnx = xmxn+1

by the induction step and therefore xmxn+1 = xm+n+1 by induction step again.
Same can be done for negative powers.
We prove the second part by induction. The statement is true when n=0. We
make the induction step and do the calculation (xm)n+1 = xmnxm by induction
step and that is equal to xm(n+1) by the first part of the theorem.

1.5 A Group as a Permutation

Looking at the Cayley tables in the previous section we note one obvious
thing which can be turned into a theorem that is astounding. Note that the
group multiplication in each row of the Cayley table simply permuted the ele-
ments around. The permutation in the Cayley tables shown is simple since the
groups we chose were abelian but if they were not the permutations would have
looked non-trivial. What is being stated here in a round about fashion is what
is called the rearrangement theorem. But we could do better and make this a
statement about groups. The theorem is as follows:

Theorem 1.4 Every group is isomorphic to a permutation group or is in gen-
eral a subgroup group of the symmetric group Sn where n is the order of the
group.
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Proof We begin by defining a function πa : G→ G as follows

πa(x) = ax. (3)

The operation on the left side is assumed to be group multiplication. The goal
is to show that this function is an isomorphism. Clearly unless a is the identity
it will take a to some other element so that we can imagine a row of group
element and the action of this function will be to switch the elements around.

1. The function is injective: Suppose πa(x1) = πa(x2) then we have that ax1 =
ax2. Both sides can be multiplied by a−1

1 to give x1 = x2.
2. The function is surjective: y = a(a−1y) = πa(a−1y)
So the function is an isomorphism and therefore we have that it is a permutation.

To show that it is a group, we must show that this permutation is closed
under the group operation which will be composition, that it has an inverse.
1. The function is closed under compositions: πa(πb(x)) = πa(bx) = (ab)x =
πab(x)
2. Closed under inversions: Consider πa−1(x) = a−1x This is the inverse of πa
since πa−1(πa(x)) = πa−1(ax) = (a−1a)x = x

Now since the map πa does not give all the permutations of all the elements
in G, we must have produced a subgroup of Sn. QED

2 Structure of Groups Analyzed via Subgroups

In the previous section we introduced the idea of a group and gave examples
all of them being concrete examples. In fact all of the examples are encoun-
tered in other areas of mathematics, physics and chemistry and can be mostly
be studied without reference to their group nature. What was noticed early in
the history of group theory was that it is possible to abstract out the essential
properties of a group and study them separately without reference to a realiza-
tion of the groups. So for example instead of studying Z2,Z3 or in general Zn
we can abstract out the properties in all these groups and study them without
reference to how they are materialized in Zn. These groups are examples of
what is called a cyclic group.

Our goal in this section is to analyze the structure of groups mainly by
investigating the kinds of subgroups that might arise. In section 1.1.2 we saw
how examining a subgroup gave us valuable information about the group itself.
Before we move towards this goal we first introduce cyclic groups as an example
of talking about groups in the abstract.

2.1 Cyclic groups

These groups are formed by taking all the powers of an element x in a group
G. Since the group is closed under the operation all the powers will be in G and
therefore we will obtain a subgroup of G. The group is denoted as < x >. Now
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since a subgroup containing x must contain all the powers of x it follows that
< x >is the smallest subgroup containing x. If the group G is generated by
< x > the G is said to be cyclic. Examples include Z =< 1 > or Zn =< [1]n >

We can prove that Zn is isomorphic to a cyclic group of order n. We already
know this to be true but for fun we can assume that we just have a set consisting
of elements in Zn and show it is isomorphic to a cyclic group G.

Theorem 2.1 Zn 'G with G being cyclic and of order n.

Proof Create the function α : Zn → G as α([i]) = xi. This function is well
defined and moreover bijective. If we allow Zn to be written additively and G
multiplicatively. We are done.

Theorem 2.2 Every subgroup of a cyclic group is a cyclic group.

Proof Let G be cyclic group and H be a subgroup. Since G is a cyclic group
it is generated by one element say, a. Which means that the elements of H are
some power of a.Let a be the smallest power such that am generates H. The task
is now to show that every element of H is a power of am. Let t be an integer
greater than m and apply the division algorithm so that at = amq+r where r is
less than m. We can rewrite this as ar = a−mqat but we decided that m was
the lowest power so r must be 0 and therefore at = amq as desired. QED

We can generalize the notion of a cyclic group by noting that if {Hi|i ∈ Λ}
is a set of subgroups of a group G, then

⋂
i∈ΛHi is also a subgroup. We then

get a set X in G and collect all the subgroups that contain X. This will form
another subgroup and it is denoted as < X >.

We now show how the subgroup < X > generalizes the idea of a cyclic group
by proving the following theorem.

Theorem 2.3 Let X be a non-empty subset of the group G. Then< X > con-
sists of all elements of G of the form xε11 x

ε2
2 . . . xεkk where xi ∈ X, εi = ±1 and

k ≥ 0.

Proof Let S denote the set of all the elements of the specified type. It can be
easily be checked that S becomes a group. Now X ⊂ S and in fact < X >⊂ S
since< X > is the smallest group that containing X. On other hand the elements
xε11 x

ε2
2 . . . xεkk must belong to X since xi ∈ X so S ⊂< X >. The only way to

sets can contain each other is if they are in fact the same. QED.

2.1.1 Order of a group element

Let x be an element of a group. If the subgroup < x > contains a finite
number of elements n, the x is said to have a finte order m while is < x > has
an infinite number of elements then x is said to have infinite order .

The following theorem contains the basic facts pertaining to the order of an
element.
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Theorem 2.4 Let x be an element of a group G.
i) if x has infinite order then all the elements of G are distinct
ii) if x has finite order m, then m is the least positive integer m such that xm = 1
and < x > consists of distinct elements 1, x, x2, . . . xm−1

iii) if x has finite order and xl = 1 if and if only l is divisible by m.

Proof By the well ordering principle there is a least integer m such that xm = 1.
Suppose there is another integer l > m such that xl = 1 then by the division
algorithm we have that xl = xmq+r for some q and r less than l and r less than m.
Thus we have that xl = xr. So if xl = 1 we must have that r= 0 and therefore
iii) is established. But we have established more since if xl = xr it must mean
that < x >= {1, x, x2 . . . xm−1} are all distinct and so ii) is established. It
should be clear that if the order of x is infinite then we can extract from the
above arguments that all powers of x must be distinct. QED

2.2 Cosets and Lagrange’s Theorem

2.2.1 Partitions and Equivalence relations

Before we consider what cosets are let us investigate the relation between a
partition and an equivalence relation because cosets are partitions of a group
induced by a certain equivalence relation.

So when we say that we have partitioned a group we mean that we have di-
vided it up into distinct subsets all of which are disjoint. More formally speaking
a partition of a set is a family of {Ai : i ∈ I} of nonempty subsets of A which
are mutually disjoint and whose union is all of A. Thus should you find an el-
ement x that lies in the subset Ai and Aj you can immediately conclude that
these two subsets are in fact the same subset and there should be no element
that does not belong to a class or subset.

Putting aside the notion of a partition for now, we consider another notion
namely an equivalence relation. First of all, what is a relation? A relation is
a true or false statement relating two elements a and b from a set.We denote
this in general as a ∼ b A relation is said to be an equivalence relation if the
following three things hold:

1. x ∼ x reflexive property
2 . if x ∼ y then y ∼ x symmetric property
3. if x ∼ y and y ∼ z then x ∼ z

A physics example is the notion of thermal equilibrium because:

1. Any system A is in thermal equilibrium with itself
2. If system A is in thermal equilibrium with B then B is in thermal equilibrium
with A.
3. If system A is in thermal equilibrium with B and B is in thermal equilibrium
C then A is in thermal equilibrium with C.
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Thus the notion of thermal equilibrium is an equivalence relation. Another
example of an equivalence relation is the notion of equality. It should now be
clear that a partition is in fact an equivalence relation. Why?

1. Every x in a set A is an element of one and only one partition Ai so x ∼ x
2. If x and y are in the same partition then we say that x ∼ y and clearly y ∼ x
3. If x is the same partition as y namely Ai and y is some partition Aj as z.
Then it must mean that x and z are in the same partition so Ai = Aj and x ∼ z

In the following theorem we formalize the intuition.

Theorem 2.5 If ∼ is an equivalence relation on A, the family of equivalence
classes, {[x] : x ∈ A} of is a partition of A. Where x acts as a representative
element for the class

Proof We define the equivalence class of an element x as [x] = {a ∈ A|where a ∼
x}. By the reflexive property x ∈ [x] and therefore A =

⋃
x∈A[x]. So A is a

union of equivalence classes.
We now show that these classes are disjoint. Suppose that [x1] and [x2] both

contain b and a ∈ [x1]. Then we have that a ∼ x1, b ∼ x1and b ∼ x2 by the
symmetric property. So [x1] ⊂ [x2] since a ∈ [x2]. We can also run the argument
the other way round to show that [x2] ⊂ [x1] and therefore these are in fact the
same class.So no two equivalence classes can share the same element ”a” and
we have therefore partitioned the set. QED

2.2.2 Cosets

Consider a group G with subgroup H and define the relation x = yh with x, y ∈
G and h ∈ H. So x ∼H y . This is an equivalence relation since

.1 x = xe with x ∈ G and e ∈ H, e is the identity in H.
2. y = xh−1 so y ∼H x
3. x = yh and y = zh1 ⇒ x = zhh1 so x ∼ z

What we have define is called the left coset and is the set of elements

{xh | ∈ H} (4)

The coset is denoted as
xH (5)

So the left cosets partition the group and also note that the only coset that
is a group is eH, where e is the identity element since no other coset apart
from this contains the identity element. Also we have a bijection from H to xH
defined by h 7−→ xh(h ∈ H) since if xh1 = xh2 then this implies that h1 = h2.
From this it follows that the order of any left coset is equal to the order of
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the subgroup H. The same exercise can be done for right cosets. Note that if
the group is abelian then the right cosets and the left cosets will be the same
otherwise they in general will not be.

2.2.3 Lagrange’s Theorem

Theorem 2.6 (Lagrange’s Theorem)Let G be a group and H be one of its sub-

group. Then the order of H, |H| divides the order G, |G| moreover |G||H| = the

number of left cosets = number of right cosets

Proof To prove this simply count the number of left cosets you have in your
group.Say there are n of them. Since they are all distinct it is a simple matter to

note that |G| = n|H| or |G||H| = n. It should be clear that we could have formed

right cosets instead and had we gone through the same argument the answers
would agree. QED

As a consequence we have arrived at an important fact. Namely, the order
of a subgroup divides the order of a group. Why is this important? Because
the order of the subgroups in a group is equal to the divisors for the order of
the group. For example a group of order 6 can only have proper subgroups
of order 3 and 2. Proper subgroups are those that are not the identity element
or the group itself.

(REMARK: If the operation of the group is ”+” is often the custom to
denote the left cosets for example as x + H rather than xH. )

2.2.4 Examples of cosets

1.Consider (Z , +) and set the subgroup to be (3Z,+) The cosets are 3Z, 1 +
3Z, 2+3Z. In general for the group under discussion and subgroup (mZ,+), the
cosets are mZ, 1 +mZ, 2 +mZ . . . (m− 1) +mZ

2.Let G = S3 and H =< (12)(3) >. First we find out what the subgroup

looks like. Let π =

(
1 2 3
2 1 3

)
then π2 =

(
1 2 3
1 2 3

)
so π2 is the identity per-

mutation (id) which means the group is of order 2. The group is not of infinite
order so we Lagrange’s theorem and get that it must have three left cosets. They
are H = {id, (12)(3)}, (123)H = {(123), (13)(2)}, (132)H = {(132), (1)(23)} We
proved earlier that S3 is non abelian so we must have right cosets be different:
H = {id, (12)(3)}, H(123) = {(123), (1)(23)}, H(132) = {(132), (13)(2)}

3. Consider the set of vectors x in Rn such that Ax = 0 where A is some
n by b matrix. This is indeed a group as can be easily checked. They form
a vector space which we will call V. Now consider the solution x which is a
solution to Ax = b concretely let us call it x0. This gives a coset x0 + V in Rn
which describes the set of solutions to Ax = b
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4. Lastly we can consider the symmetries of an equilateral triangle. We list
the group elements first:
a) e : do nothing
b) a : rotate by 120
c) b :rotate by 240
d) X: reflect through first perpendicular bisector whatever you choose it to be.
e) Y: reflect through second perpendicular bisector whatever you choose it to
be
f) Z : reflect through third perpendicular bisector whatever you choose it to be

We reproduce the multiplication table of the group
* e a b X Y Z
e e a b X Y Z
a a b e Y Z X
b b e a Z X Y
X X Z Y e b a
Y Y X Z a e b
Z Z Y X b a e

Let us pick the subgroup to be that which contains the rotations so H =
{e, a, b}. This is of order 3 so we expect 2 cosets. Let us look at the left cosets:
H = {e, a, b}, XH = {X,Z, Y }, Y H = {Y,X,Z}, ZH = {Z, Y,X}. Note we
only get two distinct cosets. According to Lagrange’s theorem there should be
groups of order 2. Looking at the table it should be clear what they are.
The group be we have described is an example of groups called the Dihedral
groups. These groups describe the symmetries of regular polygon. They are
of order 2n for an n-sided polygon. A good exercise to look at the square and
identify the subgroups and cosets of each subgroup.

2.2.5 Some consequences of Lagrange’s Theorem

Theorem 2.7 The order of any element of a finite group divides the order of
the group.

Proof We already know that the order of the subgroup must divide the order
of the group. When we look at an element of the group, we know that the
order is the least positive integer m such that xm = 1. But such an element will
produce a cyclic subgroup of order m, so the order of an element must divide
the order of the group. QED

Corollary 2.8 A little thought should convince the reader that if the order of
the group is n then xn = 1 for every x ∈ G

Theorem 2.9 Let G have order pq where p and q are prime then either G is
cyclic or every element x 6= e ∈ G has order p or q.

Proof The possible proper subgroups are those of order p and q but if this is
the case then G can’t be cyclic because the only possible order of an element in

10



the subgroup is either p or q (remember the order of the element must divide the
group) and therefore every element not equal to the identity must have order p
or q. The other option is that G has no proper subgroup and is generated by
one element of order pq. QED.

2.3 Normal Subgroups and Quotient Subgroups

2.3.1 More Careful look at homomorphisms

We introduced what a homomorphism was in the introductory section, we
now take a more careful look at them. The best we can hope for is an isomor-
phism between groups but if that is not the case, we can still have maps the
preserve the ”structure” of a group as they transform it from one to another.
What it means is this: Say we have two groups G and H and a homomorphism
φ from G to H. Then φ(a) = a′ and φ(b) = b′ then φ(ab) = a′b′. When the map
is onto we say the H is the homomorphic image of G. If the group is abelian
one might see the homomorphism expressed as φ(a+ b) = φ(a) + φ(b). We now
prove some theorems on homomorphism that give more insight into its nature.

Theorem 2.10 Let G and H be groups and f: G→ H a homomorphism. Then
i) f(e) = e
ii) f(a−1) = [f(a)]−1

Proof In any group if we have yy= e then y=e. So f(e)=f(ee)= f(e)f(e) means
f(e)=e. This proves the first part. For the second note that f(e) = f(aa−1) =
f(a)f(a−1)⇒ f(a−1) = (f(a))−1 QED

The Kernel of a map f are all the elements that are map from one group G
to the identity element H by the homomorphism f.

We list some elementary properties of homomorphisms.

1. If f : G → H and g : H → K are homomorphism then their composition is
a homomorphism from from G to K.
2.The homomorphism f : G → H is injective if the Kernel is just the identity
element.
3.If f : G→ H is a homomorphism and K is any subgroup of G, then f(K) is a
subgroup of H.

2.3.2 Normal Subgroups

Normal subgroups are important because they help us construct other groups
namely Quotient groups. But first we define them, study them and give exam-
ples.

Theorem 2.11 Let H be a subgroup of a group G. Then the following state-
ments about H are equivalent:
i) xH = Hx for all x in G.
ii)xhx−1 ∈ H whenever h ∈ H and g ∈ G
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The element xhx−1 is called the conjugate of h by x.

Proof We assume i) holds and then prove i). From one we have that xh = h1x
for x ∈ G and h, h1 ∈ H We multiply both sides by x−1 to get xhx−1 = h1 ∈
H. Next we assume ii) holds. From the first part of the proof we have that
xhx−1 = h1 ⇒ xh = xh1 so xH ⊂ Hx.. Also we have that x−1h(x−1)−1 =
h2 ⇒ h(x−1)−1 = xh2 ⇒ Hx ⊂ xH and thus xH = Hx

A subgroup that has the properties above is called a normal subgroup. We
have already seen a normal subgroup.
1.In investing the cosets of the Dihedral group of a triangle we chose a subgroup
that was in fact normal.
2. Another example is SLn(R) in the group GLn(R). To see why merely look
at the determinant of ABA−1 with A ∈ SLn(R) and B ∈ GLn(R). You should
find the determinant of the resulting matrix to be 1.
3. The abelian group of translation is a normal subgroup of the Poincare group.
4. The center of a group G denoted as Z(G) -(all the elements that commute
with every other element in the group) is a normal subgroup
5. Denote the element xyx−1y−1 as [x, y]. This is called the commutator since
it is 1 only when the group is abelian.The derived subgroup G

′
is the group

generated by all the commutators.Calculating z[x, y]z−1 shows that this is equal
to [zxz−1, zyz−1] so the derived subgroup is a normal subgroup.

(REMARK:Since we have mentioned equivalence classes in some depth, it is
easily shown that the conjugate relation xgx−1 is in fact an equivalence relation.
It should make intuitive sense then (given the definition of a normal group) that
it is a union of conjugacy classes. )

2.3.3 Quotient Groups

In the previous section we saw cosets for the first time and used them to
prove Lagrange’s theorem. We also noted that they formed equivalence classes,
it is this property that then inspires the notion of quotient groups. Since we
have equivalence classes we ask ourselves whether it is possible to think of the
cosets as a an element in some kind of group i.e is there a sense in which all the
elements in a coset act in unison so that we can think of them as essentially one
element? If this works out, we must have elements from one coset multiplying
elements from another coset and giving us another element in a different coset.
So what we want is something like this:

(xH)(yH) = zH where z = xy (6)

Starring at the equation above we see that any old subgroup of the group
will not do. It must be the case that xH = Hx for the above formula to work.
But we have already come across such subgroups they are our normal subgroups
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from the section before. So we have come across an important fact in order to
produce a group out of the cosets we need to have our subgroup H to be normal.

Once we define an operation it is important that we check that it is well
defined in this case that the operation does not depend on what member of the
cosets we chose. This would be the next step in any rigorous treatment of the
subject we omit here.

Once all that has been done we have arrived at the Quotient group denoted
as G/H

A few examples are :
1. Pick the identity element(1) and consider it a normal subgroup, the G/1 is
a quotient group. This is not a new group but in fact the G that we started off
with.
2. We saw earlier the group (nZ,+), it should be easy to prove that it is a
normal subgroup. Now create the Quotient subgroup Z/nZ = Zn . To see
this pick an element in the normal subgroup,nZ, and create a coset. namely,
x + nq|q ∈ Z. Notice that adding two different cosets is tantamount to adding
modulo n in other words we are in Zn
3. G/G

′
is an abelian quotient group . Remember G’ is the derived subgroup. 4.

The circle group (G): this consists of rotations by 2r′π where r′ ∈ R . We show
that this is a quotient group by defining the map β : R/Z → G : r+Z 7−→ r′ and
showing that this map is in fact an isomorphism. First we show that the map in
injective and this is so because suppose r′1 = r′2 ⇒ 2r′1π = 2r′2 + 2nπ for n ∈ Z
(Since r’ + n = r’) so r′1+Z = r′2+Z. Second the map is clearly surjective. So we
have a bijective map on our hand. It should be easy to prove that this bijective
map is actually a homomorphism and therefore we have an isomorphism on our
hand.
5. Pick D3 the dihedral group of the equilateral triangle and then pick the
normal subgroup to be that formed from the rotations R3. We saw earlier that
we got only two distinct cosets. The quotient group D3/R3 ' Z2

2.4 Isomorphism Theorems

Now that we have seen quotient groups and are familiar with homomor-
phisms we are in a position to prove the three isomorphism theorems. These
three theorems appear in different guises in the theory of rings, lie algebras and
vector spaces.

Theorem 2.12 (First Isomorphism theorem) If α :→ G → H is a homomor-
phism between groups then G/Ker(α) ' Im(α) via the mapping xKer(α) 7−→
α(x)

Proof We define the map β : G/K → Im(α) where K = Ker(α) by the rule
β(xKer(α)) = α(x) . This map is well defined (must be checked). The map β
is a homomorphism since β(xyKer(α)) = α(xy) = α(x)α(y) = β(xK)β(yK).
So Im(β) = Im(α) and moreover β(xK) = 1H if and only if x ∈ K. Thus β is
an isomorphism
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Theorem 2.13 (Second Isomorphism theorem) Let G be a group with a sub-
group H and a normal subgroup N. Then HN ≤ G,H

⋂
N / H and HN/N '

H/H
⋂
N

Proof Define the map Θ : H → G/N . This map takes the element h to one
of the cosets i.e h 7−→ hN thus HN ≤ G and therefore Im(Θ) ' HN/N . Now
an element h ∈ Ker(Θ) if and only if h ∈ N ⇒ h ∈ H

⋂
N and so by the first

isomorphism theorem we have that H/H
⋂
N ' HN/N

Theorem 2.14 (Third Isomorphism theorem) Let M and N be normal sub-
groups of a group G such that N ⊆M . Then M/N /G/N and (G/N)/(M/N) '
G/M

Lemma 2.15 If α : G→ H is a homomorphism the image Im(α) is a subgroup
of H annd the kernel Ker(α) is the normal subgroup of G.

Proof From the properties of homomorphism listed earlier we know that the
image of a homomorphism is a subgroup. We also have that Ker(α) is a sub-
group of G since for x, y ∈ Ker(α) we have α(x)α(y) = α(xy) = 1H1H =
1H and α(x−1) = (α(x))−1 = 1−1

H = 1H . It remains to prove that the kernel
is a normal subgroup, which is done by noting α(xgx−1) = α(x)α(g)α(x)−1 =
α(x)α(x)−1 = 1H for x ∈ G and g ∈ Ker(α)

Proof We begin with a short proof. Define the map Θ : G/N → G/M by Θ(xN) =
xM . The kernel of this map is M/N. The theorem then follows by the first iso-
morphism theorem and the lemma.

A second and more intuitive proof is to define a series of maps thusly:

Proof Version 2: Define a map G→ G/M . This takes x 7−→ xM . Then define
another map β : G/M → (G/M)/(M/N), this maps xM 7−→ (xM)(yN) with y ∈
M . Then we ask what the kernel of the map β ◦α is. Some thought shows that
the kernel are the elements in N. So the result follows by the first isomorphism
theorem.

3 Group Actions

Having studied the basics of groups in the abstract, we then turn around
and study them by finding a way of representing them as some concrete objects
(What is meant by ”concrete” will be made more precise). The way to do this
has already been introduced when we proved that a group can be considered
as a subgroup of Sn. It might seem strange we developed a whole abstract
theory of groups and now are turning around and describing them as concrete
objects. One reason this might be a good thing to do is that it makes studying
a specific group easier. We might be handed some group and are asked to study
it more carefully. A lot of the analysis can be accomplished by imagining it as
a representation of some concrete thing.
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Since we have already proved Cayley’s theorem (Theorem 1.1.4) it should
not be surprising that we want to represent the group as a group permutations
of a set. Once we do this, we say the group acts on the set.

3.1 Permutation Representation

Let G be a group and X be some non empty set, we define the function

α : G×X → X

written as α((g, x)) = g ? x such that

1. g1(g2) ? x = (g1g2) ? x
2. 1G ? x = x

What we have defined above is the left action on the set X. A corresponding
definition can be given for the right action. We aim to assign to every element in
G a permutation on the set X in such a way that the identity element is assigned
to the identity permutation and the group product gk is assigned the composi-
tion of permutation elements assigned to g and k. More abstractly what we are
doing is defining a homomorphism β : G → Sym(X) where Sym(X) is the set
of all permutations on the set X. This is called the permutation representation
of G on X.

Notice we defined the group action on x with the star and that is because
there are many ways that a group can be considered as acting on a set.

1. We can have group action by multiplication. A realization of this is if the
group G acts on its underlying set G i.e g ? x = gx. It can be easily shown that
this is in fact a left action. When we have the group acting on its underlying
set we have what is called the left regular representation.

(Note: One of the properties mentioned earlier was that a homomorphism was
injective if its kernel consisted of just the identity element. If the homomorphism
is surjective then we have a bijection. To apply this to the current situation
note that if the homomorphism γ : G→ Sym(G) has the kernel consisting only
of the identity element then we have proved Cayley’s theorem)

2. Action by conjugation. We can define g ? x = gxg−1. Again interesting
results ensue if we ask what the kernel is . Clearly then kernel consists of the
those elements in G such that xgx−1 = x i.e the elements in the center of the
group, Z(G). The center of the group consists of the elements in the group that
commute with all other elements in the group. Thus it follows that Z(G) is the
kernel of the conjugation representation.
3. Action on cosets: The left action on the cosets is defined by the rule
g ? (xH) = (gx)H.Consider the permutation representation α : G → Sym(L)
where L is the set of left cosets. Again we ask how the kernel looks like. If g is in
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the kernel it must be that (gx)H = xH i.e x−1gx ∈ H So Ker(α) =
⋂
x∈G xHx

−1

4. Lastly we give an explicit example of the permutation representation with the
group D3. Label the vertices of a triangle with 1,2,3 anticlockwise and rotate
anticlockwise
i) e→ (1)(2)(3)
ii) 120 rotation → (312)
ii) 240 rotation → (321)
iii) The three reflection correspond to (1)(23),(2)(13),(3)(12)

3.2 Orbits and Stabilizers

Given a group G and a non empty set X let’s suppose we have a left action
on X. Then a binary relation a ∼G b defined on X is defined by the rule:

a ∼G b if and only if g ? a = b

for some g ∈ G. It is easily verifiable that the binary relation defined above is
an equivalence relation.

The equivalence class containing a is:

G ? a = {g ? a|g ∈ G}

and is called the G− orbit of a. So is a union of disjoint orbits. If there is only
one orbit in the set X, then the action of the permutation on X is said to be
transitive. Examples of this include:
1. the permutation representation of Dn on the vertices of an polygon. The
whole set can be reproduced by the permutation acting on only one element
(vertex).
2.Action of Sn of {1, 2, . . . n} since there is a permutation that will take 1 to
every element in the set.
3. The left regular representation is transitive
4. The left action of the set of left cosets.

Another concept is called stabilizer. The stabilizer in G of an element
a ∈ X is defined to be

StG(x) = {g ∈ G|g ? x = x}

StG(a) is a group.
Examples of stabilizers:

1. For the conjugation action of G on G the stabilizer of x in G is all of g
such that gxg−1 = x. This group is called the centralizer of x in G.

CG(x) = {g ∈ G|gx = xg}
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2.In the action of G by conjugation on it set of subgroups, the G-orbits of H
≤ G is the set of all conjugates of H in G i.e gHg−1|g ∈ G. This is stabilizer of
H in G is a subgroup called the normalizer of H in G.

NG(H) = {g ∈ G|gHg−1 = H}

-
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