
1 K-dimensional distribution on a manifold

We a fix a k-dimensional subspace in each of the spaces

Dx ⊂ TxM dim Dx = k

If these subspaces depend smoothly on x, we say that a k-dimensional smooth
distribution was defined on M . For the theory of connections, a distribution is
given and we look for a k− dimensional stratification on M .
Let L be an n-dimensional linear space and α ∈ L be a co-vector . We can check
that the set W of vector which annihilate the covector i.e

W := {w ∈ L| < α,w >= 0}

is actually an (n− 1) dimensional subspace of space L.
If α = e1 then the w that annihilate α will be those for which w1 = 0. If α =
a1e

1 + a2e
2, then the w that annihilate will be those for which w1a1 = −w2a2.

If a1e
1 + a2e

2 + . . . ane
n then the w that annihilate α will be those such that

w1a1 = −(w2a2 + w3a3 + . . . wnan). Therefore there is one constraint and W
has to be (n-1) dimensional.

Supposing β is another co-vector in L then their annihilation space turns
out to be (n − 2) dimensional subspace of L. Doing a similar procedure as
the paragraph first set that for the two co-vectors α = e1, β = e2 and even-
tually we get two constraints namely a1w

1 = −(w2a2 + w3a3 + . . . wnan) and
b2w

2 = −((w1b1+w3b3+. . . wnbn). This process can be generalized to q linearly
independent vector in L making W an (n−q) dimensional space. If ea = (eα, ei)
is a basis in L which adapted to the subspace W i.e eα ∈W,α = 1, . . . k then the
co-vector ei(i = k + 1, . . . n) define (as constraint 1 forms) the same subspace
W . L∗ has basis (eα, ei). Why? From the work above the annihilation space
created by ei will be (n − (n − k)) dimensional which be a k dimensional and
so isomorphic to W . In-fact the subspace W is not changed if eα are scrambled
since we have e′α ≡ Aβαeβ we can find Bij such that Bije

j = e′i annihilate e′α.
A ∈ GL(k,R) or B ∈ GL(n−k,R) gives a certain degree of freedom in fixing

a subspace. This freedom may be reduced if we use an (n− k) form instead of
(n− k) 1 forms.

What we have described is a way to get a k dimensional distribution. We say
that vector fieldV belongs to the distribution D if at each point of the domain
O the value Vx of the field belongs to the subspace Dx given by the distribution.
Let a k-dimensional distribution D in a domain O be given be vector fields eα
or alternatively by constraint 1 -forms θi then < θi, eα >= 0 and V ⇐⇒ D
V = V α(x)eα ⇐⇒ < θi, V >= 0

Example
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Consider a 2-dimensional smooth distribution D in R3 given by constraint 1
-form θ3 ≡ θ := dz + xdy − ydx ≡ dz + r2dφ

i) if a, b, c ∈ F(R3) and V = a∂x + b∂y + c∂z then V ∈ D ⇐⇒ c =
ya− xb ⇐⇒ V = a(∂x + y∂z) + b(∂y − x∂z) why?

< dz + xdy − ydx, a∂x + b∂y + c∂z >= 0 ⇐⇒
c+ xb− ya = 0 ⇐⇒ c = ya− xb ⇐⇒ V = a(∂x + y∂z) + b(∂y − x∂z)

So we choose eα fields as e1 = ∂x + y∂z, e2 = ∂y − x∂z.
The above distribution is interesting because it is non-integrable. First we

introduce the Frobenius criterion

Theorem 1.1 Frobenius Theorem: In terms of vector fields a distribution D is
integrable iff the commutator of arbitrary vectors fields from D also belongs to
D i.e D is integrable ⇐⇒ {U, V ∈ D =⇒ [U, V ] ∈ D}

We can now show that the distribution introduced above is non-integrable
since

[e1, e2](f) = [∂x, ∂y − x∂z] + [y∂z, ∂y − x∂z](f)

= −2∂z(f)

−2∂z 6== ae1 + be2 so Dx was not integrable. In terms of constraint 1-forms
θi, Frobenius theorem says that a distribution D is integrable ⇐⇒ for arbitrary
vectors U, V ∈ D there holds dθi(U, V ) = 0 i.e if the restriction of all 2-forms
dθi to distribution D vanish. For our example dθ(e1, e2) = 2 6= 0

A constraint 1 -form θ of a 2 dimensional distribution in ordinary 3 dimen-
sional euclidean space E3 has the form θ = A · dr . The distribution D given by
this 1 -form consists in each point of vectors which are perpendicular to A. So
iB(A · dr) = B ·A but since according to frobenius theorem we must have θi|D
we have that B · A = 0. We also have that A · (∇ × A) = 0 Why? Frobenius
=⇒ dθ = σ ∧ θ where σ = C · dr, C · dr ∧Adr = (C ×A)dS = (∇×A)dS but
d(C ×A)dS = div(C ×A)dV . Let G = C ×A, so A · (∇×A) = A ·G = 0

2 Linear Connection and the Frame Bundle

Advantage: Contrary to what happened with describing the connection on a
manifold where we needed to use local co-ordinates with the introduction of the
frame bundle we can give the connection a global structure.

Consider the set LM of all frames e(x) at all points x of a manifold M

LM :=
⋃
x∈M

e(x)
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This is endowed with a structure of a smooth manifold of dimension (n+n2)
Why? Let xi be local co-ordinates on θ ⊂M and e(x) a frame field defined on
the same O. Then for an arbitrary frame E in x we may write E = e(x)y i.e
Ea = eby

b
a for y ∈ GL(n,R) soxi, yba may serve as co-ordinates on O ⊂M

Define a map π : LM → M, ea(x) 7−→ x. This is a smooth map with co-
ordinate representation (xi, yba) 7−→ xi. For arbitrary x the pre-image π−1(x) is
diffeomorphic to GL(n,R). The above is called the frame bundle.

There is more structure, namely a natural action of the group GL(n,R). If
A ∈ GL(n.R) then the map RA : LM → LM, e 7−→ RAe = eA is a right action
of GL(n,R) on LM .

Note: This is different from the fiber. For the first GL(n.R) we picked a
frame at a point and applied y to to another frame. But this new action is
applied on y i.e RA : (xi, yab ) 7−→ (x′i, y′ab ) = (x′i, yacA

c
b). This action is free,

transitive and vertical i.e π ◦RA = π

2.1 Connection form on LM

In order to describe a global connection on the manifold M, we need a covering
of the manifold by open domains Oα along with locally defined connection 1
forms; on each overlap O

⋂
O′ compatibility is ensured by

e′ = eA =⇒ ω̂′ = A−1ω̂A+A−1dA

Assuming e′ = eA then in the overlap region pulling back to the frame
bundle we have that ωO = ωO′ since

ωO′ := y′−1(π∗ω̂)y′ + y′−1dy′)

= (A−1y)−1(π∗(A−1ωA+A−1dA)A−1y + (A−1y)−1d(A−1y)

= y−1A
[
π∗A−1ω̂A+A−1dA

]
A−1y + y−1A

[
dA−1y +A−1dy

]
= y−1π∗ω̂y + y−1d(AA−1)y + ydy

= y−1π∗ω̂y + y−1dy

This means that there is a global connection on LM written as ω ≡ ωabEba ∈
Ω1(LM, gl(n.R)). Making use of 1-forms ω̂ω on M we can reconstruct ω on LM
as follows

Let local section be defined as follows σ : O → LM over the frame bundle
π : LM →M . These are in 1-1 correspondence with the frame fields i.e σ(x) =
e(x). Thi is done by letting yab = δab so that xi 7−→ (xi, δab ). Now let ω ∈
Ω1(LM, gl(n,R)) be the connection on LM then ω̂ = σ∗ω. In π−1(O) we have
ω = y−1π∗ω̂y+y−1dy buty = I so ω = π∗ω̂ =⇒ σ∗ω = σ∗◦π∗ω̂ = (π◦σ)∗ω̂ = ω̂

2.2 Properties of Linear Connection

1. R∗ω = AdA−1ω ≡= A−1ωA
First we derive R∗gei.
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R∗gei = R∗g−1ei

= LhEi

= LhR∗g−1Ei

= L∗hLg−1∗Lg∗Rg−1∗Ei

= Lh∗Lg−1∗AdgEi

≡ (Adg)
i
jei

using δij =< ei, ej >=< R∗ge
i, R∗gei > we get (Adg−1)ije

j .

The components of ωi.eEba transform like ei so that R∗Aω = AdA−1ω
2. Let ξC be the fundamental field of the action RA which corresponds to

a C ∈ gl(n,R). ξC = (yC)ab∂
b
a ≡ Cab ξEa

b
where ξEa

b
= ycb∂

a
c and ∂ac ≡ ∂

∂c
a

. Then

< ω, ξC >= C
3. LξCω = −adCω = −[C,ω] (A proof of this is given later.)

2.3 Geometrical interpretation of a connection form: Hor-
izontal distribution on LM

A vertical distribution Dv may be defined on LM so that the vertical subspace
V ereLM is declared to be the subspace which the distribution singles out in
each tangent space.

Dve := V ereLM ≡ Kerπ∗ ⊂ TeLM

so that W ∈ Dve ⇐⇒ π∗W = 0 A general vector field on LM is given by
ξ = a ∂

∂x + cab∂y
a
b so a general vertical vector field has the form

W = W b
a(x, y)∂yab = W b

a(x, y)ξEa
b

(1)

It has dimension n2 and is integrable since for any 2 V,W ∈ Dve , [W,V ] ∈ Dve .
If there is an action of a group G on a manifold M, an action on distributions
on the manifold is naturally induced: if Rg shifts points, then Rg∗ shifts vectors
and so

Dx 7−→ Rg∗Dx := (RgD)xg (2)

It may happen thatD is G-invariant RgD = D i.e the shifted subspace always
happens to coincide with the subspace residing originally at the shifted point.
Thus a vertical distribution on LM is GL(n,R) invariant i.e for A ∈ GL(n,R)
RADv = Dv or RA∗(Dve ) = DveA. Locally we have that RA∗(x, y

a
b ) = (x, yabA

b
c).

The construction of the vertical distribution needs no extra structure.
Let ω = ωabE

b
a be a connection form. The 1-forms wab are linearly indepen-

dent. Why? Let kabω
a
b = 0 then 0 =< kabω

b
a, ξC >= kabC

b
a since C 6= 0 then

kab = 0 meaning ωab are linearly independent.
Now< ω, V >= 0 ⇐⇒ V ∈ Dh defines a smooth n-dimensional distribution

Dh on LM is defined; it is called the horizontal distribution. The subspace
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singled out (at each point e ∈ LM) by the distribution is called the horizontal
subspace

HoreLM ≡ Dhe ⊂ TeLM (3)

Let Dh be the horizontal distribution on LM given by a connection form ω.
We can check that if v ∈ TxM , then at each point e ∈ π−1(x)∃ a horizontal lift
i.e a unique vector vh ∈ TeLM such that π∗v

h = v for vh ∈ HoreLM . We have
e = a∂i − yab ∂bae ∈ TeLM with π∗e = a∂i, a∂i ∈ TxM .

The distribution Dh is spanned by vector fields

Hi ≡ ∂i− < ωab , ∂i > ybc∂
c
a ≡ ∂i− < ωab , ∂i > ξEb

a
(4)

A general horizontal vector field V on LM may be written in the form

V ∈ Dh ⇐⇒ V = vi(x, y)Hi ≡ V i(x, y)∂hi (5)

The proof the statement follows by picking the ansatz vh = vi∂i + vab ∂
b
a using

< ωab , v
h >= 0 we have < ωab , v

h >= 0 =< ωab , v
i∂i > + < ωab , v

a
b ∂

b
a > =⇒

−vi < ωab , ∂i >= vab =⇒ vh = vi∂i − vi < ωab , ∂i > ∂ba. We also have the
operation of the horizontal lift v 7−→ vh is a linear isomorphism of the whole
tangent space in x and the horizontal subspace in e since vi∂i ↔ viHi.

If a vector turns out to be at the same time horizontal and vertical, it is
necessarily zero because if e ∈ Lm and is in V ereLM then < ω, ξC >= C but
it is also in HoreLM then C = 0. This means that

TeLM = V ereLM
⊕

HoreLM

The horizontal distribution Dh on LM is GL(n,R) invariant i.e

RADh = Dh or RA∗(Dhe ) = DheA

because we know that RAω = AdA−1ω = A−1ωA also for v ∈ HoreLM we
have < ω, v >= 0 then < ω,RA∗v >=< ω,AdA−1 >= A−1 < ω, v > A = 0

2.4 Horizontal distribution on LM and Parallel transport
on M

Imagine we have a curve γ(t) on M and a field of frames e(t) on the curve. Such
a field of frames then induces naturally a curve γ̂ on LM , one assigns a frame
ea(γ(t)) to the parameter t, interpreted as a point on LM . We fix a frame E at a
point of the curve γ. Making use of the connection, we generate an auto-parallel
frame field e‖(t) on γ̂. γ̂ has the feature of horizontality i.e its tangent vector is
horizontal at each point. (The connection picks out the horizontal vectors). We
now verify that an auto-parallel frame field e‖ on a curve γ(t) on M induces a
horizontal curve γ̂(t) on LM i.e < γ, ˆ̇γ >= 0.

Let γ̂(t) be represented by xi(t), yab (t) then e
‖
a = ybaeb
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0 = ∇γ̇e‖a = ∇γ̇(ybaeb)

= (∇V yba)eb + yba∇V eb

= vi
∂

∂xi
ybaeb + yba < ω̂ca, γ̇ > ec

= ẏbaeb + yba < ω̂ca, γ̇ > ec for γ̇ = ẋi∂i

= ybaeb + yba < ω̂ba, ẋ
i∂i > eb

All this implies that −yba < ω̂ba, ẋ
i∂i > eb = ẏbaeb. This means that ˆ̇γ ≡

ẋi∂i + ẏab ∂
b
a = ẋi∂i − yba < ω̂ba, ẋ

i∂i > ∂ba = ẋi
(
∂i − yba < ω̂ba, ∂i > ∂ba

)
. This is

the expression we had for a general horizontal vector in (6.5).

3 Principal Bundles

2 manifolds P and M are to be given along with a smooth surjective map π :
p → M . All pre-images being submanifolds of P diffeomorphic to each other.
Aright vertical action of a lie group G in the total space P is to be added. i.e

Rg : P → P, Rgh = Rh ◦Rg, π ◦Rg = π

The action is free (all stabilizers are trivial) and transitive(any 3 pts in a
single fiber can be joined by the action). There is a local product structure
which may or may not turn out to be global

ψα : π−1(Oα)→ Oα ×G
ψα : p→ (m,h) =⇒ pg → (m,hg)

For any 2 points p, p’ residing in a common fiber π(p) = π(p′) ∃! group
element g ∈ G which links the points in the sense that p′ = pg Why? The
action of the group is free and transitive. Let G be a lie group, H a closed lie
subgroup . Each homogeneous space M G/H is the base of a principal H-bundle
π : G→M G/H. We can check in fact we have a principal bundle

a) Any two domains Oα,Oβ that lie in a coset of G/H will be taken to the
fiber in the total space, so that π−1(Oα) ' π−1(O)β
b)For the right vertical action of the lie group in the total space we have g ∈
G, g 7−→ [g], g̃ ∈ H gg̃ 7−→ [gg̃] = [g] =⇒ π ◦Rg̃ = π
c) Local product structure

ψα = π−1(Oα)→ Oα ×G
ψα : g 7−→ ([g], h) =⇒ gg̃ → ([g], gg̃)

There is also additional structure, namely a fiber preserving Lg (left action)
of the group G on the total space, as well as its projection Lg being left action
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of G on the base M i.e π ◦ Lg = Lg ◦ π.

The generators of the action H along fibers are the left invariant field LY on
G corresponding to elements Y which belong to the sub-algebra Ξ ⊂ G Why?

Theorem 3.1 The flow of left-invariant vector fields is generated by right trans-
lation. The flow of right invariant vector fields is generated by left translations.

Proof LetLX be a left invariant vector field and ΦLX
t the flow of left invariant

vector fields. But we know that Lg∗LX = LX and the flow of Lg∗LX is Lg ◦
Φ ◦ L−1

g , which is also the flow of LX =⇒ Lg ◦ ΦLX
t ◦ Lg−1 = ΦLX

t =⇒
Lg ◦ ΦLX

t = ΦLX ◦ Lg. So the flow commutes with all left translation but we

know that Lg ◦Rh = Rh ◦ Lg so ΦLX
t is got by a right translation. The similar

argument can be made for a right invariant vector field �

The generators of the Lg action in the total space G are all right-invariant
fields Rx G with X ∈ G i.e

d

dt

(
Lexp(tX)g

)
= ξ̂X where ξ̂X is a right invariant vector field (6)

Examples

1. SL(2,C) bundle

G = SL(2,C), H = stabilizer of

(
1
0

)
. The stabilizer matrix is of general

form ( 1 b
1 a ). But these must have determinant 1 this means that a = 1 and

lower left hand corner is actually zero so that we have an element of H look-
ing like ( 1 b

0 1 ). This is isomorphic to C. What about the orbit of ( 1
0 )? This is(

a b
c d

)
( 1 b

0 1 ) = ( ac ) Which isomorphic to C2 ≡M ' G/H It turns out that this

H-bundle is trivial. To show this we provide a global section. ψ : ( ac )→
(
a c̄

k

c̄ ā
k

)
where |a|2 + |c|2 = k. From all this we can now see that SL(2,C) is diffeomor-
prhic to R3 × S3 because SL(2,C) 'M ×H = C2 ×C ' R× S3 × (C ' R2) '
R3 × S3

2. Proper orthochronous Lorentz group. G = L↑+, H = stabilizer of

(
1
0
0
0

)
a) the orbit of the point is upper hyperboloid.
b)as a manifold , M ' R3

c) the group H is isomorphic to SO(3)
Note: If the base manifold is contractible then the bundle is globally trivial.

Since R3 is contractible then L↑+ = R3 × SO(3)

3. Hopf Bundle
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Consider C2 with elements χ and R3 with elements x → xa x =
(
x1
x2
x3

)
.

SU(2) acts on both manifolds as χ 7−→ Aχ ≡ LAχ,∀A ∈ SU(2) and on R3

through 2-sheeted covering f : SU(2) 7−→ SO(3) so that (f(A)x) = L̂f(A)x and
We first need to understand why SU(2) ' S3 to construct the hopf bundle.

The construction comes from quaternions{I, i = iσz, j = iσy,k = iσx} hence a
general quaternion is A = aI+bi+cj+dk =

( x y
−ȳ x̄

)
where x = a+ ib, y = c+ id

The inner-product of quaternions is (x1, y2) · (x2, y2) = x1x̂ + y1ŷ2. So if
we have unit quaternions i.e x1x̂ + y1ŷ2 = 1 then A ∈ SU(2) but because
detA = a2 + b2 + c2 + d2 = 1 we have that SU(2) ' S3.

Going back the construction of a hopf bundle we define a non-linear map

π : C2 → R3 χ 7−→ r r : χ†σχ (7)

Since the matrices {I, σx, σy, σz} span all hermitian matrices the matrix
χχ† may be parametrized as χχ† = 1

2 (rI2 + r · σ) where r := χ†χ. We can
now restrict π to S3 ⊂ C2 of radius

√
r in C2 so to columns of χ which satisfy

χ†χ = r. This restriction has a two dimensional sphere at an image. To see
that one calculates |r|2 = (χ†σ)(χχ†)σχ) = r2. We can normalizer r so r2 = 1.
In this case we get a restricted map π̃ : S3 → S2 with η 7−→ n with

ηη† =
1

2
(I2 + n · σ) where n := η†ση (8)

The map π̃ is SU(2) equivariant i.e

π̃ ◦ LA = L̂f(A) ◦ π̃ (9)

this means that the following actions are equivalent η 7−→ Aη or n 7−→ Rn
where A ∈ SU(2), R ∈ SO(3). Plus the map π̃ is surjective because each vector
n has a pre-image since n→ ηη† = niσ

i. Next we note that if η is the pre-image
of n then so is eiαη since eiαηη†e−iα = ηη†. So really the what we have is the
following

eiαη 7−→ n (10)

We now think of π̃ as a projection map on some bundle. Looking at (6.10)
we see that there is a fiber at a point on S2 being U(1) ' S1.Therefore locally

S3 ' S2 × S1 and the fiber bundle π̃ : S3 → S2 is called the hopf bundle

4 The Connection and parallel transport on a
Principal bundle

4.1 The connection

Definition A connection on a principal G-bundle π : P → M is an arbitrary
horizontal G-invariant distribution Dh on total space P
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All horizontal subspaces within a single fiber may be linked together by the
action of the group G. Same is true for vertical subspaces i.e Rg∗HorpP =
HorpgP and Rg∗V erpP = V erpgP .

The decomposition of a vector into Hor and V er commutes with the group
i.e horRg∗V = Rg∗horV .
Given X ∈ G consider the fundamental field ξX of the action Rg on P. Define a
map

Ψp : G → V erpP X → ξX(p) (11)

Ψp is an isomorphism since Ψp is a representation of the lie algebra G, plus if
ξX(p) = ξY (p) then ξX−Y (p) = 0 and X − Y is in the stabilizer which is trivial
so X = Y . Therefore we have injectivity and the action is transitive so we have
surjectivity.

We also have the following behavior

Rg∗ ◦ (ξX) = ξAdg−1X(pg) = Rg∗ ◦Ψp

Ψpg ◦Adg−1 = Ψpg ◦ (g−1Xg) = ξAdg−1X(pg) =⇒ Rg∗ ◦Ψp = Ψpg ◦Adg−1

Aslo we have Ψ−1
pg ◦Rg∗ = Adg−1 ◦Ψ−1

p .
Now we introduce the connection form. At a point p ∈ P define a lie algebra

-valued 1-form by the prescription

< ωp, vp >:= Ψ−1
p (V erp) (12)

Clearly the horizontal vectors are annihilated by the 1-form since Ψ−1
p (horP ) =

0.
If Ei is an arbitrary basis of the lie algebra then ωp = ωipEi. Where we

can think of ωip as 1-forms and serve as the constraint 1-forms of the horizontal
subspace HorpP ⊂ TpP

4.2 Parallel Transport and the Exterior co-variant deriva-
tive

Let Dh be a horizontal distribution on P, given by connection form ω. We
can check that if v ∈ TxM is an arbitrary vector at a point x ∈ M , then at
each point p ∈ π−1(x) in the fiber over x ∃ unique horizontal lift such that
π∗v

h = v, vh ∈ HorpP and vi∂i 7−→ viHi which is clearly an isomorphism.
Also π∗ : TpP → TxM gives a decomposition TpM = V erpP

⊕
HorpP

where V erpP := kerπ∗ =⇒ HorpP ' TxM .
If we lift v to vh to all points of the fiver over x, we get a vector field which

is G-invariant . Rg∗v
h = vh again vi∂i → viHi and < ω, vh >= 0 = ω(vh) and

ω(Rg∗v
h) = R∗gω(vh) = 0 =⇒ Rg∗v

h ∈ HorpgP .
Let γ be a curve on M of principal bundle π : P →M with connection and

p an arbitrary point from the fiber over γ(0). There exists a unique curve γh
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on P given by conditions

π ◦ γh = γ

γh(0) = p

< ω, (γ̇h) >= 0

γ can be made into an integral curve of some vector field V. It will be unique
because of uniquenes and existence of solutions of ODE. The vector field can
then be lifted and since there is an isomorphism betweenTxM and HorpP there
will be a unique lift on the principal bundle with a corresponding unique inte-
gral curve for the lift. This will be γh.This procedure makes the claim obvious.
All this means is that γ̇h = (γ̇)h and (γ ◦ σ)h = γh ◦ σ, σ : t → σ(t) ∈ R where
σ is a re-parametrization.

We interpret points of the horizontal lift p(t) ≡ γh(t) as a parallel trans-
ported ”generalized frame”. We can transport more general objects. These are
equivariant functions on P i.e maps

Φ : P → (v, ρ) (13)

Φ ◦Rg = ρ(g−1) ◦ Φ i.e Φ(pg) = ρ(g−1)Φ(p) (14)

A quantity of type rho at a point x ∈ M is introduced as an equivariant
function Φ from the fiber over x to V. Its value Phi(p) is regarded as ”compo-
nents” of the quantity with respect to ”basis” p. If we change ”basis” i.e p→ pg
then Φ(p)→ Φ(pg) ≡ ρ(g−1)Φ(p)

Parallel transport of Φ can be defined in the same we defined parallel trans-
port of frames i.e if we parallel transport a frame along a curve γ, the corre-
sponding components are kept constant (by definition). This means

Φ is parallel transported along γ =⇒ Φ(γh) = constant

The above condition may be re-stated as < dΦ, (γ̇)h >. An explicit calcula-
tion can confirm this

< dΦ, (γ̇)h >= dΦ(γ̇h) = Φ∗ =
d

dt

(
Φ(γh)

)
|t=0 =

d

dt
( constant) = 0 (15)

The fact that Φ corresponds to an autoparallel quantity of type ρ on a curve
γ may be written in terms of forms, namely a projection on the horizontal part
and a combination of such a projection with exterior derivative. For an arbitrary
p-form α on P, define a new p-form horα by

(horα) = (U, . . . V ) := α(horU, . . . horV ) (16)

10



i) it is well-defined (result is a p-form) since Γ : V 7−→ horV is a linear
operation and an isomorphism.

ii) the map hor : Ωp(P )→ Ωp(P ) is a projection since hor ◦ hor = hor. We
check this by note (hor ◦ hor)α(U, . . . V ) = (horα)(horV, . . . horV ) = α(hor ◦
horU, . . . hor ◦ horV ) = α(horU, . . . horV )

iii) horizontal forms are annihilated by a vertical argument and horα =
α ⇐⇒ iWα = 0 for W ∈ V erP . On direction we have horα(W, . . . ) =
α(horW, . . . ) = α(W, . . . ) = 0 since horα = α =⇒ iWα = 0. In the other di-
rection we have iWα = 0 = α(W, . . . ) = 0, α(horW, . . . ) = (horα)(W, . . . ) =⇒
α(horW, . . . ) = α(W, . . . ) = 0 =⇒ horα = α

iv) For connection we have horω = 0 since ω(V ) := Ψ−1◦verV, v ∈ TpP =⇒
horω = ω(horV ) = Ψ−1(ver ◦ horV ) = 0

v) hor(α+λβ) = horα+λhorβ and hor(α∧β) = horα∧horβ. This means
that hor is an endo-morphism of the cartan algebra Ω(P ) of differential forms

Ω̄(P ) := Im hor ⊂ Ω(P )

The map hor preserves the representation of α. WE can now define the
exterior covariant derivative by

Dα := hor dα (17)

i) it is map D : Ωp(P )→ Ω̄p+1(P )

ii) it behaves like D(α+λβ) = Dα+λβ,D(α∧β) = (Dα)∧horβ+(η̂ horα)∧β

iii) D preserves the representation of α since hor does.

Suppose a quantity Φ of type ρ satisfies the condition DΦ = 0 over some
domain U on M . If γ is any curve passing in U , then the restriction of Φ to
fibers over γ corresponds to an auto-parallel quantity of type ρ defined over γ
since < dΦ, (γ̇)h >=< dΦ, hor(γ̇)h >=< hordΦ, (γ̇)h >=< DΦ, (γ̇)h >

4.3 Curvature form and explicit expression for exterior-
covariant derivative

The lift of curve γ, γh, is not uniquely determined i.e two paths starting at
x on M may end at different points in the fiber once the horizontal lift is
performed. We are only guaranteed to land in the same fiber. Another way
of staring this is parallel transport around a loop may be non-trivial, whether
this is true or not depends on the integrability of the horizontal distribution. If
the horizontal distribution is integrable, then the lift of a small enough lop lies
entirely within the integral sub-manifold passing through the point x. But since

11



there is only one integrable sub-manifold along x the end and starting points
necessarily coincide. Therefore integrability determines if parallel transport is
locally dependent. So we need a way of measuring non-integrability.

Frobenius integrability condition of a distribution states that the distribution
is integrable ⇐⇒ the restriction of the exterior derivative of all constraint 1
forms to D vanishes i.e dθi = 0 on D or Dh is integrable ⇐⇒ {U, V ∈ Dh =⇒
dω(U, V ) = 0}.

So the horizontal distribution Dh is integrable ⇐⇒ the 2-form Ω ≡ hordω
vanishes i.e

Dh is integrable ⇐⇒ Ω := Dω = 0 (18)

This 2-form is called the curvature form. If Dh is integrable =⇒ Dω =
hordω = dω(horU, horV ) = 0 and ⇐= But if dω(horU, horV ) = 0 =⇒ Dh is
integrable.

This condition is simple but we still lack a simple algorithm for computing
the curvature form. We now develop that.

Let α and β be differential forms with values in a lie algebra G then

i) α = αiEi, β = βiEi then the prescription

[α ∧ β] := αi ∧ βj [Ei, Ej ] ≡ ckijαi ∧ βjEk (19)

is well defined i.e it does not depend on the basis of the lie algebra. This is true
since if A changes the basis then A−1 changes the components i.e αi, βj and the
net effect is nothing.

ii) [α∧β] = −(−1)pq[β∧α]. So there is a negative sign got by changing order
of differential forms and another changing order of elements in the lie bracket.

iii) [α∧β](U, V ) := [α(U), β(V )]+[β(U), α(V )] so a corollary is [α∧α](U, V ) =
2[α(U), α(V )]. Note that extra sign coming from switching lie algebra elements
in the commutator prevents us from getting zero.

We can use definition of wedge product to get the results

iv) d[α ∧ β] = [dα ∧ β] + [η̂α ∧ dβ] where η = (−1)p

v) hor[α ∧ β] = [horα ∧ horβ]

So the curvature form Ω ≡= ω may be expressed as Ω = dω + 1
2 [ω ∧ ω]. To

prove this we have to prove that dω(horU, horV ) = dω(U, V ) + [ω(U), ω(V )].
We need to prove this for an arbitrary basis . So let us say that Up = Ûp + ξx
where Ûp ∈ HorP and ξx ∈ V erP . If U and V are entirely horizontal then it
is easy to see that the claim is true. The two slight more non-trivial cases are

12



if one is entirely horizontal and the other entirely vertical and lastly if both are
entirely vertical. In either case the hard part is the first term on the right hand
side.

dω(ξx, Û) = iÛ iξxdω = 0

dω(ξx, ξy) = iξy iξydω = −[X,Y ]

Using the above results the claim follows. Both results come from the iden-
tity iξxdω = −adXω = −[X,ω] ≡ −ckijXiωjEk. Let us prove this

Recall R∗gω = Adg−1ω =⇒ d
dt (R

∗
gω)|t=0 = d

dt (Adg−1ω) Now LV = d
dtΦ
∗|t=0

where Φ∗ is the flow of V. Right translations are the flow of left invariant
vector fields so d

dt (R
∗
gω) = Lξx(ω). The Ad map has the lie algebra version

as ad =⇒ Lξxω = −adXω ≡= −[X,ω]. We can calculate iξxdω as follows
iξxdω = (Lξx − diξx)ω = Lξxω − dX = −[X,ω]

Amazing consequence: The operation hor is realized as simple addition of

the term 1
2 [ω ∧ ω]. We thus do not bother with horizontal directions.

The curvature form has the following properties

i) horΩ = Ω because we showed hor ◦ hor = hor

ii) R∗gΩ = Adg−1Ω because R∗g ◦ hor = hor ◦ R∗g so R∗gΩ = R∗ghordω =
horR∗gdω = hordR∗gω = hordAdg−1ω = Adg−1Ω0

iii) Ω satisfies Bianchi identity DΩ = DDω = 0 because DDω = hord(dω +
1
2 [ω ∧ ω]) = hor[dω ∧ ω] = [Dω ∧ horω] = [Dω ∧ 0] = 0.

On the total space P, consider a differential p-form α with values in the lie
algebra G and a q-from with values in a representation space (W,ρ ) of the lie
algebra then α = αiEi and β = βaEa (Ea basis for W ). We then define the
following operations

ρ(α)∧̇β := αi ∧ βaρ(Ei)Ea (20)

= ρabi(α
i ∧ βb)Ea (21)

= (αab ∧ βb)Ea (22)

The above exterior product is independent of choice of basis and therefore
is well defined. If we have a 0-form Φ we have

ρ(α)∧̇Φ = ρ(α) ∧ Φ

= αiρ(Ei)Φ
aEa

= (ρabiα
iΦb)Ea = (αabΦb)Ea

13



There other exterior product defined in (6.19) is a special case of (6.20)
where rho is simply the adjoint representation. So ρ(α) = adα = [αiEi, ]. In
the following we state a few properties of this exterior derivative

i) d(α∧̇β) = d(αi ∧ βaρ(Ei)Ea) = dαi ∧ βjρ(Ei)Ea + η̂αi ∧ dβjρ(Ei)Ea so
ρ(dα)∧̇β + η̂ρ(α)∧̇dβ

ii) horα∧̇β = horα∧̇horβ

If α is of type Ad and β is of type ρ then α∧̇β is of type ρ.

R∗g(ρ(α∧̇β)) = ρ(R∗gα) ˙∧R∗gβ
= ρ(Adg−1α)∧̇ρ(g−1)β

= ρ(g−1αg) ∧ ρ(g−1)β

= ρ(g−1)[ρ(α) ∧ β]

Let π : P → M be a principal G-bundle , ω = ωiEi a connection form,
α = αaEa a horizontal p-form of type ρ, Φ = ΦaEa a function of type ρ and
denote ωab = ρabiω

i then

Dα = dα+ ρ(ω)∧̇α (23)

DΦ = dΦ + ρ(ω)Φ (24)

Why? Decompose the vector fields into horizontal parts Uh and vertical parts
Uv

If all the vector fields in (6.23) are horizontal then the identity trivially holds.
If all the vector fields are horizontal except for a few where ”a few” means more
than one, then one of the horizontal vector fields will be eaten by α which is
horizontal. If all the vector fields are vertical then we get 0=0 and identity
holds. The hard case is if we have one vertical field and the rest are horizontal.

hordα(Uh1 , U
h
2 , . . . U

v
n) = iUv

n
α(Uh1 , . . . U

h
N−1) + ρ(X)α(Uh1 , . . . , U

h
N−1) (25)

Now note that d
dt (R

∗
gα)|t=0 = Lξxα = iξxddα + diξxα = iξxdα but also

R∗gα = ρ(g−1)α =⇒ d
dt (R

∗
gα)|t=0 = d

dt (ρ(g−1)α)|t=0 and therefore iξxdα =
−ρ(X)α. Using this result in (6.25) the result the identity follows. For (6.24) if
we simple have a horizontal field the result follows trivially. If the vector field
is vertical Uv then dΦ(horUv) = Uv(Φ) + ρ(X)Φ. Now, is Uv(Φ) = −ρ(X)Φ?.
The answer is yes since Φ is of ρ type.
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4.4 Integrability of horizontal distributions and path in-
dependence of parallel transport

Earlier we saw that if a region is small enough so that it entirely lies within
a specific integrable distribution then parallel transport was path independent.
Now suppose the region is big. Consider 2 paths c0 and c1 such that both begin
in x and terminate in y. Do their lifts lie in the same integrable manifold? If
c0 and c1 are homotopic then this is true.If the paths fail to be homotopic the
parallel transport may(does not need to) depend on path.

Complete parallelism: a linear connection for which there exists a con-
variantly constant frame field ea such that ∇V ea = 0. We have complete par-
allelism ⇐⇒ Ω = 0. In terms of a connection form it gives ωab = 0. So
Ω = dωab + ωac ∧ ωcd = 0. Noe suppose Ω = 0 does that mean there exists
ea in which ωab = 0? IT turns out Ω = 0 =⇒ ∃σ : σ∗ω = 0 where σ is a
section. Ω = 0 says that the horizontal distribution is integrable. Now let S
be an integral sub-manifold which is the image of section σ from some domain
on M . This is a horizontal section i.e a section such that all vectors tangent
to it are horizontal. Now pull back ω to the base manifold like ω̂ = σ∗ω now
< σ∗ω, v >=< ω, σ∗v >= 0 since σ∗v is horizontal.
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