1 Tangent and Co-Tangent Bundle

Let M be a smooth manifold and let T, M be a the tangent space at a point
x € M . Define the set TM as the collection(disjoint) of all tangent spaces at
all points of M.
™ := | T.M (1)
reM

Define a surjective map called the canonical projection
7 TM - M v+——z (2)

We can endow this collection with a smooth structure.Let z® be a local co-
ordinate in neighborhood O of a point z i.e let ¥ : O — R*[z!, 22 ... 2"] be
a chart. Consider the domain O : 7= 1(0) € TM. Then we introduce on O
canonical co-orindates as follows: if u € O = v € TM for some z € O then
v = ”aaga ley (W1, V2 . 0m) € R™.

So the 2n- tuple of numbers (wl, ™l .v") uniquely corresponds to
apoint v e @ andso ¥ : O — G LU TR YL B O is a chart on T'M.
If there is a change of co-ordinates z* — z'® then (z%,v%) — (2%, J¢(x)v?)
where J;' = %. Moreover {@, ‘il} is a smooth atlas because in the intersec-
tion of two charts we can apply the Jacobian transformation which will involve
smooth relations. Plus T'M is always an orientable manifold because the jaco-

bian of a co-ordinate change is always positive

oz’ ")
O(z,v)

J= =J2>0

Another important manifold is denoted by T*M. It is a set of all cotangent
spaces at all points of M.
T°M:= ) T*M (3)
xeM

There is a corresponding canonical projection map denoted by letter 7
T:T"M — M (4)

We can introduce a smooth structre as well. If p € T x M its decomposition
with respect to a co-ordinate basis is

p=pudz® (p1,...pn) € R

SO (a:l, sz pr, .. .pn) uniquely corresponds to a point p € o , 7 HO) so
that U : O — R2 [zt ... 2™ p1,...py] is a chart on O C T x M. If there is a
change of co-ordinates then (z%,p,) — (ml“, (J’l)g(x)pb)



Let M be a part of the plane R? in which both cartesian co-ordinates (x, )
and polar co-ordinates operator. Then on T'M we have the following relations

T =17Cos¢
Yy = 7rsing
r= /x2+y2
~1,Y
—tan (2
6 =tan'(Y)

also we have p,dz + pydy = p,dr + pydp and J~! = gg‘;’f’i. So we have the
following calculation

0 o, . .
pr= g (rcos ¢)p, + 5(7‘ sin @)p, = cos ¢p, + sin pp,
0 0 . .
Py = % (r cos ¢)ps + %(T sin @)p, = —r sin ¢p, + r cos ppy

and so

Pr = COS ¢pm + sin d)py
Dy = —7Tsin ¢p, + 7 cos gpy

A similar calculation can be done to show that

sin ¢

Dz :prCOSf?*qu r
. cos ¢

Py =prsing+ps—

2 General Concept of a Fiber Bundle

A generalization of the concepts discussed is if we pasted at each point x € M
a general manifold F), all of which are diffeomorphic to F ( i.e if z,2’ € M then
F, ~ F,y ~ F ). The manifold F is called a typical fiber, F, is the fiber over a
point x, M is the base and

B = U F,  is the total space (5)
xeM

All these elements when taken together constitute a structure called the
Fiber Bundle. It has a canonical projection map

T:B—>M (6)



All the preimages F, = 7~ !(z) are required to be diffeomorphic to a common
manifold F. Lastly, there is a requirement of a local product structure: 3 a
covering O, of the base M and a system of

v, : 7r_1((’)a) — 0, x F

W, is called a local trivialization such that m; oV, = m where w1 : M X F —
M.
Fiber bundles can be mapped to one another

m:B—>M—7n B — M

The bundle map is a pair of maps f, f defined so that the following diagram
commutes

f

B——DB

7

MﬁM’
!

A trivial bundle is equivalent to a product bundle through a diffeomorphism
f:B—>MxF

which obeys 71 o f = 7 and f is called a global trivialization. For sufficiently
small pieces (charts) any bundle is trivial. But the pieces are glued together in
such a way that a resulting bundle need not be globally trivial.

Examples.
1. Cylinder — trivial bundle
St xR — St

2. Mobius Band not trivial
Glued together so that for any 2 charts (x,y), (2',y’) we have 2’ = x + ¢,y =
—y+coor [0,1] x [0,1]/ ~ where (0,t) ~ (1,1 —1¢)

Another concept is that of a local section of a bundle w : B — M. It is
a smooth map ¢ : O — B, O C M such that m o 0 = idp. ¢ maps a point
x € O C M to its own fiber since (:El,...m”) — (xl,...w”,vl,...v") and
then (xl, ot ot v") — (ml, .. x”) First map is ¢ and the second is the
canonical projection. On a product bundle 7 : M x F' — M the section are in 1-1
correspondent with maps from M — F since each point x — F,, ~ F. Bundles
usually have additional structure like that of a linear space or homogeneous
space. Tangent bundles and co tangent bundles have the structure of a vector
space.



2.1 The maps 7" f and T'f

Let f: M — M be smooth map of manifolds and 7wp; : TM — M, 7y : TN —
N be corresponding tangent bundles. Remember f. =T, M — T, )N. Vectors
on M may be however regarded as points on T'M. Consequently, a further map
Tf:TM — TN is induced given by prescription

(Tf)(w) := fev (7)

The map T'f is therefore a collection of all f, maps. The map T f closes the
commutating diagram belows

M4f>]\7

We also have the following composition formula

T(fog)=(fog)(v)
= (fog)«(v)
= fioTyg
=TfoTg

Similarly for T x M we can define T*f : T*N — T*M with f: M — N is
an injective map by (T f), = [«

Rememeber we pushforward vectors and pullback forms. The following dia-
gram therefore commutes

T™ l TN l
f

M —N
We also have the following composition rule
T (fog) =T goT"f
=(feg)a
= (9" f")a
=T goT"f

3 Vertical subspace, vertical vectors

Let m: G — M be a fiber bundle. The existence of the projection 7 singles out
in the tangent space of any point b € B a vertical subspace.



VeryB<Ty,B Very:= Kermb (8)

The most general vertical vector fields on TM and T*M respectively are
V = vi(z,0)5% and W = Wi(x,p)aip where (z%,v"), (2%, p;) are co-ordinates
on the tangent bundle and the cotangent bundle respectively. The vertical

subspaces on TM and T*M span the vector (3%1, . %) , (%, . %)
N "

3.1 Lifts on T'M and T*M

In the context of fiber bundles a lift is in general a procedure which assigns to
a geometrical object on the manifold, a geometrical object on the total space B
of the bundle w : B — M . We begin by lifting cureves from M — TM . Let
v:R — M,t — y(t) beacurve on M. Then the curve: 4 : R — TM, t — ~(t)
is called the natural lift of the curve v from M — T M. We can check that the
lifted curve 4 is always exactly "over” the curve v i.e m o 4 = v as follows; the

co-ordinate representation of v(t) is (&1(t),..., 2, (t)) so in the tangent bundle
we get the point (z1,...,2n, 1(t),...,2,(¢t)). Once the projection map is ap-
plied we get (x1,...,x,) which is a point on the curve.

Consider a vector u € M, u € T,M = 7w~ !(z). We may associate a curve in
the fiber 77 1(z) over x with this vector o(t) = v +tu v € 7~ 1(z). The tangent
vector at ¢ = 0 of the curve ins a vector at the point v € T M.

ut = 0o(0) = %hzo (v + tu) 9)

This vector is called the vertical lift of the vector u to the point v € T M.
In co-ordinate representation the curve is o(t) = (2!, 22,..., 2", vl + tul,v? +
tu?,...v"™ + tu™) and the resulting vertical lift has co-ordinates (u!,...,u") i.e

ut = 0(0) € Ver,TM < T,TM or explicitly ut = u®-2.. A single vector u

ava,
may be lifted in this way to each point in the fiber 7~! over x, giving rise to a

vector field defined on the fiber. If u = u® a.?:a on M the vertical lift ( to each
71 (x)Ve € M) generates a vector field on T M, which is called the vertical lift

of the field wu.

We can also generate a vector field on TM by a different procedure namely
by considering the flow on M and applying the functor T to get a flow on T'M

™ 22 Tar

™M l ™™ \L

M —
Dy

T®; i indeed a flow since T®;1 s = T(P; 0 &;) = TP, o ;. This flow
is generated by a vector field called the complete lift of the field V. Let &, :



M — M generated by V = V*(z) 6‘30. The co-ordinate representation of the
infinitesimal flow ®, and T'®, read

O, ax® — 2%e) = 2% + eV4(x)
TP, : (2% v") — (z%(€),v(€)) = (z* + V(z),v* + Vflfvb)

The co-ordinate expression for the lifted field V is V = V¢ aga —|—V"g(a:)vb%.

We can construct lifts on the cotangent bundle also. Consider a co-vector a at
x € M. We assign a curve in the fiber 771(z)

o(t):=p+ta pecrz) (10)

The tangent vector at ¢t = 0 of the curve is a vector in the point p € T*M

al = o(0) = %\tzo(p +ta) T,T"M (11)

This is the vertical lift of the co-vector at p € T*M. the lift of a co-vector is
a vector. The co-ordinate presentation of the curve o(t) is z%(t) = 2% p,(t) =
Pa + tag sO

o' =0(0) € Ver,T*M < T,T*M (12)

therefore o = aodz® gets lifted to ot = aaai. The procedure of constructing
a complete lift of a cector field on M to T'M flnay be repeated with some mod-
ification T* is a contra-variant functor (it reverses arrows). So we have to use
the inverse map when lifting the flow.

T* (@) =T"0_, (13)

M e M
It can also be shown by similar arguments as before that T*®_; is indeed a flow

on T*M. We can also derive its vector field.
Consider the flow &, : M — M. The infinitesimal flow reads

T*®_: (2% pa) = (¢(€),pale) = a* + eV, p" — eVip®)

so V = V%9, the generator of the flow ®; is lifted to V = V29, — Vgpa%



4 Canonical Tensor Fields on TM and T*M

We introduce the following flows
b, :v— ety p——elp (14)

The generators for the motion are A € =Z(T'M) and A, € Z(T*M) which
are

0 0

A =wv w
0

o =Py,

The fields are in both cases vertical. Consider a tensor field A on TM or
(T*M) which is homogeneous of degree k in fiber co-ordinates. This means
that if we express the field in terms canonical co-ordinates and then substitute
(2%, v%) — (2%, M) or (2% pa) — (2% A\p,) we get A — A A. Examples
are the following.

B 0 0 0 0 ~ -
1.V =Vve Vb —s v Vea® — VoV,k=1
oxa Vv v Oxe VA O\ve -V
2.0 = aa(x)apa — Oza(.%‘) e — ol = A_loﬂ7 k=—1

b a,b

3.G = gap(x)v"° —> gab(x))\2v W= G NG, k=2

This means that LoA = kA Why? For ¥ : (z%,v%) — (% \v®) or ¥ :
(z%,p*) — (2% A\p®). This corresponds to a flow with following effect ®*A =
A A, set \F = eF*. The lie derivative is the derivative with respect to time of
the pullback of tensor on some flow evaluated at t = 0. So

dd x A
dt

=0 = ke A

which implies the result.

The next canonical field on TM is a (}) type tensor field which is called a
vertical endomorphism S € T}(T'M) defined as

=1 (15)

In canonical co-ordinates it is S = dz® ® a‘za. We have the following results

easily derived
0] 0]
S <8x“> - v

0
5 () =0

S (dz%) = 0
S (dv®) = dz®




Notice therefore that KerS, = ImS, = VerTM. Also S, is nilpotent i.e
S, 08, = 0 also note that S(V) = V. It is homogeneous and of degree -1.

5 Hamilton and Euler Lagrange Equations on
Fiber Bundles

Consider a system of second-order differential equations
i =T"z,2) a=1,...n (16)

We introduce a new variable v® := #%(¢). Then these system becomes a
system of 2n-first order differential equations

% =v*
v =T%x,v)

We form a vector field with these equations

0 0
3 —+ (2, v) 5 — 5ya
If 2% is treated as a co-ordinate on the manifold then v® is a natural co-
ordinate on the tangent bundle. Note: Not all vector fields on T'M are the
kind we want.

If W = A%=x,v)52 + B%(x,v)5% is a general vector field on T'M then
looking at T' we see that the constraint is in Ala)(z,v), namely it should be
A%(xz,v) = v* = &*. This constraint can be summarized as follows S(I') = A
where A is the Liouville field introduced earlier. If T € = (TM ) satsfies S(T") =
A then each mtegral curve of the field I' is the natural lift 4 of a curve v on M.
Since I' = z¢ axa +0® a”a, then v(¢) = (z1(t),...,2™(t) on M, then we see that
the integral curve of I is @1(t),...2"(t) which is a map R — T'M but also the
natural lift of (¢). All this means that second order differential equations are
in 1-1 correspondence with vector fields on T'M which satisfy S(T') = A.

I = (17)

Example:
=t = T=2— —wx 0
Ox o
I'=(Acoswt — Bsinwt)é + (Bcoswt + Asinwt)g
B Ox oz
5.1 Euler Lagrange Field
We have the equation
d OL 0L
= — = 1
dt 0z Oz 0 (18)



If L(z, %) is a Lagrangian and if

. 0L
A, 8) = Frans

. 0L
Al #) 1= 5g

. oL
Cu(x,2) = pyn

We can construct what the second order differential equation looks like,

thusly,

d_dtd  0x" 9 0i 0
dt — dtdot Ot dxe Ot di®
(dt 0 ozt 9 ozt 9 ) oL oL

ot T ot ot T ot 03 ) 9e  owe
*L ., ., 0?L  OL

L, AL,
92005 ° T pibaza g

.y O°L %L L

Y om0 | 0rb0ie | Oae
Playing around with indices eventually gices
i =T%z,4)  where T = —(A7Y)®B,i¢ + (A~ H)%C,

Now we can show that with L. we can introduce a symplectic structure.

To that end we introduce the cartan forms

©r := S(dL) (19)
w:=dOr (20)
Simple calculations give
oL
= dz®
Or Do T
0*L 0%L
_ d b dz® dv? dz®
wr, 9000 T N\ dx +8v“8va v ANdr

wy, 1s closed since if one calculates dw;, one of the co-ordinates will be re-
peated giving a result of zero. Plus wy, is non-degenerate <= det ( “81}” #+ O)
since wy, /\wL A-+-Awp #0 <= wy # 0. The above exterior product will look
like det (524 b)dx Ao Nz Adv Aot A0 = det (%) £ 0

A Lagrangian that obeys the above conditions is called non-singular and
also is non-singular <= wy is symplectic. So any non-singular or regular



lagrangian makes a symplectic manifold (TM,wy) . The lagrangian we use in

physics are regular.

We can introduce a Hamilton field (¢ by
ic,wr, = —df (21)
Therefore we can make a Hamiltonian system (T'M,wy,, H) with f = H and
integral curves of (g being the dynamics.
H:=F,=AL-1L (22)
To show that eq 5.21 and 5.22 have embedded in them the second order
ODE for the Euler Lagrange Equations we do the following.

.0 .0
Ir=A"—+ B'"—
o + vt

ipr = —dEL

. >’L isi b ich g 9*L isa g b ich g 0 , 40L oL . .

i = g (AL! — Bold) o (Alstant = Aaa®) =~ (o 55 — i)
o 4OL_  OL . .

N (axc (W get) ~ ge)d )

(0L 0*L 0’L 0’L ,
== d” ——dz’ — ~dz® ) — -dz" B’
<8vlavb Ut 2ronr ™ T greau x) vadui

0?L 0?L oL
_ d d _ 2 c
N (U ducdud (v Oz 8xc)dx )

Therefore we have
0%L dob — vl 0L
Ovtovd OveOvd
2 2 2 2
l[aLdb 3L} z[aL]_{ 4 O0°L Ml}d:rc

v Ozcovd = Ox¢

%

. r’ — _—
OxtOvd Ox*Ove Ovedvt
The above equation imply that A* = v* and let us remember that B? = % =
% we get

(L PL Y 0L
v oziovd . Ovedvt v oxc .

Re-arranging the above equation gives us the ODE we wanted.

10



5.1.1 Co-ordinate Free Version of Euler Lagrange Equations

Define the map ~
EL.(Vv,I) T (VL) - VL (23)

We write the co-ordinate presentation of the above map

. OL o OL o pOL

I( 31}“) a [ Oze T Bva}
vcﬁ (Ua(?L)_H,jca (Ua(‘?L)_ aai+uavbaL
oxc  Ove ove ' vl oxo 27 Py

—_ - v
ove

o in@fL e 0 OL oL 1_)aaL .. OL
o0x¢ Qv ove ov®  OJx@ ov®

v [F(@ZL) - (“)axa} = v &L (x,v) = v*E(,,T)

The point is that you can pull out the v* and everything will be fine. So

we have £(0,,T") = I‘gfa - gfa. We can evaluate this on an integral curve of
oo e c & OL _ d (0L ¢ & 9L _
the field T, recall that #¢ = v® so ¥z - 5% = 5 (55) and v 5z 575 = 0 so

E(0,,T) = %% — 88 mLa For the Euler Lagrange field we get the Euler-Lagrange

equations.
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