
1 Tangent and Co-Tangent Bundle

Let M be a smooth manifold and let TxM be a the tangent space at a point
x ∈ M . Define the set TM as the collection(disjoint) of all tangent spaces at
all points of M .

TM :=
⋃
x∈M

TxM (1)

Define a surjective map called the canonical projection

π : TM →M v 7−→ x (2)

We can endow this collection with a smooth structure.Let xa be a local co-
ordinate in neighborhood O of a point x i.e let Ψ : O → Rn[x1, x2, . . . , xn] be
a chart. Consider the domain Ô : π−1(O) ⊂ TM . Then we introduce on Ô
canonical co-orindates as follows: if u ∈ Ô =⇒ v ∈ TM for some x ∈ O then
v = va ∂

∂xa |x, (v1, V 2, . . . vn) ∈ Rn.
So the 2n- tuple of numbers

(
x1, . . . , xn, v1, . . . vn

)
uniquely corresponds to

a point v ∈ Ô and so Ψ̂ : Ô → R2n[x1, . . . xn, v1, . . . vn]. Ô is a chart on TM .
If there is a change of co-ordinates xa 7−→ x

′a then (xa, va) 7−→ (x
′a, Jab (x)vb)

where Jab = ∂xa

∂xb . Moreover {Ô, Ψ̂} is a smooth atlas because in the intersec-
tion of two charts we can apply the Jacobian transformation which will involve
smooth relations. Plus TM is always an orientable manifold because the jaco-
bian of a co-ordinate change is always positive

Ĵ =
∂(x′, v′)

∂(x, v)
= J2 > 0

Another important manifold is denoted by T ∗M . It is a set of all cotangent
spaces at all points of M.

T ∗M :=
⋃
x∈M

T ∗M (3)

There is a corresponding canonical projection map denoted by letter τ

τ : T ∗M →M (4)

We can introduce a smooth structre as well. If p ∈ T ∗M its decomposition
with respect to a co-ordinate basis is

p = padx
a (p1, . . . pn) ∈ Rn

so
(
x1, . . . xn, p1, . . . pn

)
uniquely corresponds to a point p ∈ Ô , τ−1(O) so

that Ψ̂ : Ô → R2n[x1, . . . , xn, p1, . . . pn] is a chart on Ô ⊂ T ∗M . If there is a

change of co-ordinates then (xa, pa) 7−→
(
x
′a, (J−1)ba(x)pb

)
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Let M be a part of the plane R2 in which both cartesian co-ordinates (x, y)
and polar co-ordinates operator. Then on TM we have the following relations

x = r cosφ

y = r sinφ

r =
√
x2 + y2

φ = tan−1(
y

x
)

also we have pxdx + pydy = prdr + pφdφ and J−1 = ∂xb

∂x′a . So we have the
following calculation

pr =
∂

∂r
(r cosφ)px +

∂

∂r
(r sinφ)py = cosφpx + sinφpy

pφ =
∂

∂φ
(r cosφ)px +

∂

∂φ
(r sinφ)py = −r sinφpx + r cosφpy

and so

pr = cosφpx + sinφpy

pφ = −r sinφpx + r cosφpy

A similar calculation can be done to show that

px = pr cosφ− pφ
sinφ

r

py = pr sinφ+ pφ
cosφ

r

2 General Concept of a Fiber Bundle

A generalization of the concepts discussed is if we pasted at each point x ∈ M
a general manifold Fx all of which are diffeomorphic to F ( i.e if x, x′ ∈M then
Fx ' Fx′ ' F ). The manifold F is called a typical fiber, Fx is the fiber over a
point x, M is the base and

B :=
⋃
x∈M

Fx is the total space (5)

All these elements when taken together constitute a structure called the
Fiber Bundle. It has a canonical projection map

π : B →M (6)
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All the preimages Fx ≡ π−1(x) are required to be diffeomorphic to a common
manifold F. Lastly, there is a requirement of a local product structure: ∃ a
covering Oa of the base M and a system of

Ψa : π−1(Oa)→ Oa × F

Ψa is called a local trivialization such that π1 ◦Ψa = π where π1 : M ×F →
M .

Fiber bundles can be mapped to one another

π : B →M � π′ : B′ →M ′

The bundle map is a pair of maps f, f̂ defined so that the following diagram
commutes

B
f //

π

��

B′

π′

��
M

f̂

// M ′

A trivial bundle is equivalent to a product bundle through a diffeomorphism

f : B →M × F

which obeys π1 ◦ f = π and f is called a global trivialization. For sufficiently
small pieces (charts) any bundle is trivial. But the pieces are glued together in
such a way that a resulting bundle need not be globally trivial.

Examples.
1. Cylinder → trivial bundle
S1 × R→ S1

2. Mobius Band not trivial
Glued together so that for any 2 charts (x, y) , (x′, y′) we have x′ = x + c, y =
−y + c2 or [0, 1]× [0, 1]/ ∼ where (0, t) ∼ (1, 1− t)

Another concept is that of a local section of a bundle π : B → M . It is
a smooth map σ : O → B, O ⊂ M such that π ◦ σ = idO. σ maps a point
x ∈ O ⊂ M to its own fiber since

(
x1, . . . xn

)
7−→

(
x1, . . . xn, v1, . . . vn

)
and

then
(
x1, . . . xn, v1, . . . vn

)
7−→

(
x1, . . . xn

)
. First map is σ and the second is the

canonical projection. On a product bundle π : M×F →M the section are in 1-1
correspondent with maps from M → F since each point x 7−→ Fx ∼ F . Bundles
usually have additional structure like that of a linear space or homogeneous
space. Tangent bundles and co tangent bundles have the structure of a vector
space.
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2.1 The maps T ∗f and Tf

Let f : M →M be smooth map of manifolds and πM : TM →M , πN : TN →
N be corresponding tangent bundles. Remember f∗ = TxM → Tf(x)N . Vectors
on M may be however regarded as points on TM . Consequently, a further map
Tf : TM → TN is induced given by prescription

(Tf)(v) := f∗v (7)

The map Tf is therefore a collection of all f∗ maps. The map Tf closes the
commutating diagram belows

TM
Tf //

πM

��

TN

πN

��
M

f // N

We also have the following composition formula

T (f ◦ g) = (f ◦ g)∗(v)

= (f ◦ g)∗(v)

= f∗ ◦ Tg
= Tf ◦ Tg

Similarly for T ∗M we can define T ∗f : T ∗N → T ∗M with f : M → N is
an injective map by (T ∗f)α = f∗α

Rememeber we pushforward vectors and pullback forms. The following dia-
gram therefore commutes

T ∗M

τM

��

T ∗N
T∗foo

τN

��
M

f // N

We also have the following composition rule

T ∗(f ◦ g) = T ∗g ◦ T ∗f
= (f ◦ g)∗α

= (g∗ ◦ f∗)α
= T ∗g ◦ T ∗f

3 Vertical subspace, vertical vectors

Let π : G →M be a fiber bundle. The existence of the projection π singles out
in the tangent space of any point b ∈ B a vertical subspace.
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V erbB ≤ TbB V erb := Kerπ∗b (8)

The most general vertical vector fields on TM and T ∗M respectively are
V = vi(x, v) ∂

∂vi and W = Wi(x, p)
∂
∂pi

where (xi, vi), (xi, pi) are co-ordinates
on the tangent bundle and the cotangent bundle respectively. The vertical

subspaces on TM and T ∗M span the vector
(
∂
∂v1 , . . .

∂
∂vn

)
,
(

∂
∂p1 , . . .

∂
∂pn

)
3.1 Lifts on TM and T ∗M

In the context of fiber bundles a lift is in general a procedure which assigns to
a geometrical object on the manifold, a geometrical object on the total space B
of the bundle π : B → M . We begin by lifting cureves from M → TM . Let
γ : R→M, t 7−→ γ(t) be a curve on M . Then the curve: γ̂ : R→ TM, t 7−→ ˙γ(t)
is called the natural lift of the curve γ from M → TM . We can check that the
lifted curve γ̂ is always exactly ”over” the curve γ i.e π ◦ γ̂ = γ as follows; the
co-ordinate representation of ˙γ(t) is (ẋ1(t), . . . , ẋn(t)) so in the tangent bundle
we get the point (x1, . . . , xn, ẋ1(t), . . . , ẋn(t)). Once the projection map is ap-
plied we get (x1, . . . , xn) which is a point on the curve.

Consider a vector u ∈M , u ∈ TxM ≡ π−1(x). We may associate a curve in
the fiber π−1(x) over x with this vector σ(t) = v + tu v ∈ π−1(x). The tangent
vector at t = 0 of the curve ins a vector at the point v ∈ TM .

u↑ := ˙σ(0) ≡ d

dt
|t=0 (v + tu) (9)

This vector is called the vertical lift of the vector u to the point v ∈ TM .
In co-ordinate representation the curve is σ(t) = (x1, x2, . . . , xn, v1 + tu1, v2 +
tu2, . . . vn + tun) and the resulting vertical lift has co-ordinates (u1, . . . , un) i.e

u↑ ≡ ˙σ(0) ∈ V ervTM < TvTM or explicitly u↑ = ua ∂
∂va . A single vector u

may be lifted in this way to each point in the fiber π−1 over x, giving rise to a
vector field defined on the fiber. If u = ua ∂

∂xa on M the vertical lift ( to each
π−1(x)∀x ∈M) generates a vector field on TM , which is called the vertical lift
of the field u.

We can also generate a vector field on TM by a different procedure namely
by considering the flow on M and applying the functor T to get a flow on TM

TM
TΦt //

πM

��

TM

πM

��
M

Φt

// M

TΦt i indeed a flow since TΦt+s = T (Φt ◦ Φs) = TΦt ◦ Φs. This flow
is generated by a vector field called the complete lift of the field V. Let Φt :
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M → M generated by V = V a(x) ∂
∂xa . The co-ordinate representation of the

infinitesimal flow Φε and TΦε read

Φε : xa 7−→ xa(ε) = xa + εV a(x)

TΦε : (xa, va) 7−→ (xa(ε), va(ε)) = (xa + εV a(x), va + V a,bv
b)

The co-ordinate expression for the lifted field Ṽ is Ṽ = V a ∂
∂xa +V a,b (x)vb ∂

∂va .
We can construct lifts on the cotangent bundle also. Consider a co-vector α at
x ∈M . We assign a curve in the fiber τ−1(x)

σ(t) := p+ tα p ∈ τ−1(x) (10)

The tangent vector at t = 0 of the curve is a vector in the point p ∈ T ∗M

α↑ := ˙σ(0) ≡ d

dt
|t=0(p+ tα) TpT

∗M (11)

This is the vertical lift of the co-vector at p ∈ T ∗M . the lift of a co-vector is
a vector. The co-ordinate presentation of the curve σ(t) is xa(t) = xa, pa(t) =
pa + tαa so

α↑ ≡ ˙σ(0) ∈ V erpT ∗M ≤ TpT ∗M (12)

therefore α = αadx
a gets lifted to α↑ = αa

∂
∂pa

. The procedure of constructing
a complete lift of a cector field on M to TM may be repeated with some mod-
ification T ∗ is a contra-variant functor (it reverses arrows). So we have to use
the inverse map when lifting the flow.

T ∗
(
Φ−1
t

)
≡ T ∗Φ−t (13)

T ∗M
T∗Φt //

τ

��

T ∗M

τ

��
M

Φt // M

It can also be shown by similar arguments as before that T ∗Φ−t is indeed a flow
on T ∗M . We can also derive its vector field.

Consider the flow Φt : M →M . The infinitesimal flow reads

T ∗Φ−ε : (xa, pa)→
(
xa(ε), pa(ε) = xa + εV a, pa − εV a,bpb

)
so V = V a∂a the generator of the flow Φt is lifted to V = V a∂a − V b,apa ∂

∂pa
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4 Canonical Tensor Fields on TM and T ∗M

We introduce the following flows

Φt : v 7−→ etv p 7−→ etp (14)

The generators for the motion are 4 ∈ Ξ(TM) and 4p ∈ Ξ(T ∗M) which
are

4 = va
∂

∂va

4p = pa
∂

∂pa

The fields are in both cases vertical. Consider a tensor field A on TM or
(T ∗M) which is homogeneous of degree k in fiber co-ordinates. This means
that if we express the field in terms canonical co-ordinates and then substitute
(xa, va) 7−→ (xa, λva) or (xa, pa) 7−→ (xa, λpa) we get A 7−→ λkA. Examples
are the following.

1.Ṽ = V a
∂

∂xa
+ V a,nv

b ∂

∂va
7−→ V a

∂

∂xa
+ V a,bλv

b ∂

∂λva
=⇒ Ṽ → Ṽ , k = 1

2.α↑ = αa(x)
∂

∂pa
7−→ αa(x)

∂

λpa
=⇒ α↑ → λ−1α↑, k = −1

3.ĝ = gab(x)vavb 7−→ gab(x)λ2vavb =⇒ ĝ → λ2ĝ, k = 2

This means that L4A = kA Why? For Ψ : (xa, va) 7−→ (xa, λva) or Ψ :
(xa, pa) 7−→ (xa, λpa). This corresponds to a flow with following effect Φ∗A =
λkA, set λk = ekt. The lie derivative is the derivative with respect to time of
the pullback of tensor on some flow evaluated at t = 0. So

dΦ ∗A
dt

|t=0 = kektA

which implies the result.

The next canonical field on TM is a
(

1
1

)
type tensor field which is called a

vertical endomorphism S ∈ T 1
1 (TM) defined as

S := I↑ (15)

In canonical co-ordinates it is S = dxa ⊗ ∂
∂va . We have the following results

easily derived

S

(
∂

∂xa

)
=

∂

∂va

S

(
∂

∂va

)
= 0

S (dxa) = 0

S (dva) = dxa
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Notice therefore that KerSv = ImSv = V erTM . Also Sv is nilpotent i.e
Sv ◦ Sv = 0 also note that S(Ṽ ) = V ↑. It is homogeneous and of degree -1.

5 Hamilton and Euler Lagrange Equations on
Fiber Bundles

Consider a system of second-order differential equations

ẍa = Γa(x, ẋ) a = 1, . . . n (16)

We introduce a new variable va := ẋa(t). Then these system becomes a
system of 2n-first order differential equations

ẋa = va

v̇a = Γa(x, v)

We form a vector field with these equations

Γ = va
∂

∂xa
+ Γa(x, v)

∂

∂va
(17)

If xa is treated as a co-ordinate on the manifold then va is a natural co-
ordinate on the tangent bundle. Note: Not all vector fields on TM are the
kind we want.

If W = Aa(x, v) ∂
∂xa + Ba(x, v) ∂

∂va is a general vector field on TM then

looking at Γ we see that the constraint is in A(a)(x, v), namely it should be
Aa(x, v) = va = ẋa. This constraint can be summarized as follows S(Γ) = 4
where 4 is the Liouville field introduced earlier. If Γ ∈ Ξ(TM) satsfies S(Γ) =
4 then each integral curve of the field Γ is the natural lift γ̂ of a curve γ on M.
Since Γ = ẋa ∂

∂xa + v̇a ∂
∂va , then γ(t) = (x1(t), . . . , xn(t) on M , then we see that

the integral curve of Γ is ẋ1(t), . . . xn(t) which is a map R → TM but also the
natural lift of γ(t). All this means that second order differential equations are
in 1-1 correspondence with vector fields on TM which satisfy S(Γ) = 4.

Example:

ẍa = −ω2x =⇒ Γ = ẋ
∂

∂x
− ω2x

∂

∂ẋ

Γ = (A cosωt−B sinωt)
∂

∂x
+ (B cosωt+A sinωt)

∂

∂ẋ

5.1 Euler Lagrange Field

We have the equation
d

dt

∂L

∂ẋa
− ∂L

∂xa
= 0 (18)
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If L(x, ẋ) is a Lagrangian and if

Aab(x, ẋ) :=
∂2L

∂ẋa∂ẋb

Aab(x, ẋ) :=
∂2L

∂ẋa∂xb

Ca(x, ẋ) :=
∂L

∂xa

We can construct what the second order differential equation looks like,
thusly,

d

dt
=
dt

dt

∂

∂t
+
∂xa

∂t

∂

∂xa
+
∂ẋa

∂t

∂

∂ẋa(
dt

dt

∂

∂t
+
∂xb

∂t

∂

∂xb
+
∂ẋb

∂t

∂

∂ẋb

)
∂L

∂ẋa
− ∂L

∂xa
= 0

∂2L

∂xb∂ẋb
ẋb + ẍb

∂2L

∂ẋb∂ẋa
− ∂L

∂xa
= 0

ẍb
∂2L

∂ẋb∂ẋa
= − ∂2L

∂xb∂ẋa
+

∂L

∂xa

Playing around with indices eventually gices

ẍa = Γa(x, ẋ) where Γ = −(A−1)abBabẋ
c + (A−1)abCb

Now we can show that with L we can introduce a symplectic structure.

To that end we introduce the cartan forms

ΘL := S(dL) (19)

ω := dΘL (20)

Simple calculations give

ΘL =
∂L

∂va
dxa

ωL =
∂2L

∂xb∂va
dxb ∧ dxa +

∂2L

∂va∂va
dvv ∧ dxa

ωL is closed since if one calculates dωL one of the co-ordinates will be re-

peated giving a result of zero. Plus ωL is non-degenerate ⇐⇒ det
(

∂2L
∂va∂vb

6= 0
)

since ωL∧ωL∧ · · ·∧ωL 6= 0 ⇐⇒ ωL 6= 0. The above exterior product will look

like det
(

∂2L
∂va∂vb

)
dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ . . . dvn 6= 0 ⇐⇒ det

(
∂2L

∂va∂vb

)
6= 0

A Lagrangian that obeys the above conditions is called non-singular and
also is non-singular ⇐⇒ ωL is symplectic. So any non-singular or regular
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lagrangian makes a symplectic manifold (TM,ωL) . The lagrangian we use in
physics are regular.

We can introduce a Hamilton field ζf by

iζfωL = −df (21)

Therefore we can make a Hamiltonian system (TM,ωL, H) with f = H and
integral curves of ζH being the dynamics.

H := EL = 4L− L (22)

To show that eq 5.21 and 5.22 have embedded in them the second order
ODE for the Euler Lagrange Equations we do the following.

Γ = Ai
∂

∂xi
+Bi

∂

∂vi

iΓωL = −dEL

iΓωL =
∂2L

∂va∂vb
(
Aiδiadv

b −Biδbi dxa
)
+

∂2L

∂xa∂vb
(
Aiδai dx

b −Aiδbi dxa
)

= −
(

(
∂

∂vc
(vd

∂L

∂vd
)− ∂L

∂vc
)dvc

)
−
(

∂

∂xc
(vd

∂L

∂vd
)− ∂L

∂xc
)dxc

)

Ai
(

∂2L

∂vi∂vb
dvb +

∂2L

∂xi∂vb
dxb − ∂2L

∂xa∂vi
dxa
)
− ∂2L

∂va∂vi
dxaBi

= −
(
vd

∂2L

∂vc∂vd
+ (vd

∂2L

∂xc∂vd
− ∂L

∂xc
)dxc

)
Therefore we have

Ai
∂2L

∂vi∂vb
dvb = vd

∂2L

∂vc∂vd

Ai
[
∂2L

∂xi∂vb
dxb − ∂2L

∂xa∂vc

]
+Bi

[
∂2L

∂va∂vi

]
=

[
−vd ∂2L

∂xc∂vd
+
∂L

∂xc

]
dxc

The above equation imply that Ai = vi and let us remember that Bi = dv
dt =

d2xi

dt we get

[
vi

∂2L

∂xi∂vb
+ ẍi

∂2L

∂va∂vi

]
dxi =

∂L

∂xc
dxc

Re-arranging the above equation gives us the ODE we wanted.
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5.1.1 Co-ordinate Free Version of Euler Lagrange Equations

Define the map
EL : (V,Γ)→ Γ(V ↑L)− Ṽ L (23)

We write the co-ordinate presentation of the above map

Γ(V a
∂L

∂va
)−

[
va

∂L

∂xa
+ va,bv

b ∂L

∂va

]
vc

∂

∂xc
(va

∂L

∂va
) + v̇c

∂

∂va
(va

∂L

∂va
)−

[
va

∂L

∂xa
+ va,bv

b ∂L

∂va

]
va
[
vc

∂

∂xc
∂L

∂va
+ v̇c

∂

∂vc
∂L

∂va
− ∂L

∂xa
− v̇a ∂L

∂va

]
+ v̇c

∂L

∂vc

va
[
Γ(∂↑aL)− ∂

∂xa

]
= vaELa (x, v) = vaE(∂a,Γ)

The point is that you can pull out the va and everything will be fine. So
we have E(∂a,Γ) = Γ ∂L

∂va −
∂L
∂xa . We can evaluate this on an integral curve of

the field Γ, recall that ẋc = vc so v̇c ∂
∂vc

∂L
∂va = d

dt (
∂L
∂va ) and vc ∂

∂xc
∂L
∂va = 0 so

E(∂a,Γ) = d
dt

∂L
∂ẋa −

∂L
∂xa For the Euler Lagrange field we get the Euler-Lagrange

equations.
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