
We know look at two detailed applications of group theory in classical and
quantum error correction.

1 Classical Error Correcting codes(Hamming Codes)

We would like to send k bits m1,m2 . . .mk over a noisy communication
channel. The potential 2k bits live in a k dimensional vector space F k2 = F2 ⊗
F2 . . . F2 over the finite field F2. What is done is that these 2k codes are padded
with n-k parity bits to make an n bit encoded message in an 2n dimensional
vector space. These extra parity bits are set so that they obey n-k linearly
independent constraints known as parity checks. Each of these parity checks
can be thought of as a vector in Fn2 : H(i) = H1(i) . . . Hn(i). The constraint is
that all codewords must have a vanishing scalar product with the parity check
H(i) i.e H(i).c =

∑j=n
j=1 Hj(i)cj = 0 with i = 1, . . . n− k. Theses parity checks

can be assembled into a matrix called the parity check matrix as follows

H =

 H1(1) H2(1) H3(1) . . . Hn(1)
... . . .

...
H1(n− k) H2(n− k) H3(n− k) . . . Hn(n− k)

 (1)

We can then write our parity condition as merely

H.c = 0 (2)

The linear code C with (n − k) × n parity check matrix H consists of the
2k vectors c ∈ Fn2 that satisfy the parity check condition. The vectors c are
referred to as codewords. Note that the linear code C also forms a vector space
as can be easily verified.

Since linear code C for a k dimensional subspace there is a basis for the
codewords b1, . . . bk i.e

c =

j=k∑
j=1

mjbj (3)

It is useful to introduced what is called the generator matrix G which is
formed by assembling it from the basis vectors as columns i,e

G =

(
b1 . . . bk
... . . .

...

)
(4)

The codespace is then the column space of G. Thus the linear transformation
G can be thought of as a map G : F k2 → Fn2 that encodes the message, m, into
the codeword c:

c = Gm (5)
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where

m =


m1

m2

...
mk

 (6)

Combining 1.2 and 1.5 we find a different way of defining the linear error
correcting code C

0 = HGm (7)

Since the above equation is true for all m ∈ F k2 we have that

0 = HG (8)

Now, note that the (n-k) columns of the HT are linearly independent and
from 1.8 we have that

0 = GTHT (9)

So we can define a dual code space C⊥ that has as its generator matrix HT

and its parity check matrix is GT we thus re-write 1.9 as

H⊥G⊥ = 0 (10)

Since the rows of GT are a basis of C 1.10 says that any basis for C is
orthogonal to any basis for C⊥. So any codeword in C⊥ is perpendicular to any
code word in C .

1.1 Errors, Hamming Weight and Distance

Because we are assuming a noisy communication channel, the codeword c,
we send will in general not be the message received at the other end. Let us
call the received message y. Having done this we can define an error vector e as
such:

e = y − c =


e1
e2
...
en

 (11)

If ei = 0 fo tall i then no errors occurred. We further make the assumption
that any errors that accumulate are not correlated and occur with probability
pi for all i. We would like the decoder to look at the received message y and
guess what error e? occurred and return the best guess c̃ which is defined as
follows:

c̃ = y − e? (12)

Definition The Hamming weight wt(x) of a vector x is equal to the number of
its non-zero components xi
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Definition The Hamming distance d(x,y) is the number of places that two
vectors x and y differ.

Theorem 1.1 d(x,y) = wt(x-y)

Proof The places in which the two vectors are both zero when one takes the
difference will not contribute to wt(x− y). Thus the places in which they differ
will contribute to wt(x−y) but these are precisely the places that also contribute
to d(x, y),

An important property for a linear code C is the minimum distance d be-
tween any codewords.

dmin = min d(c, c′)c,c′∈C (13)

One can find a quick way of the finding dmin by noting the following: since
d(x, y) = wt(x − y) and x − y ∈ C it then follows that there is a codeword in
the linear code C that is equal to dmin so all one needs to do in order to find
dmin is to find the codeword with the least hamming weight.

A linear code C with length n, dimension k and dmin is referred to as a
[n,k,d] code.

Theorem 1.2 A linear code C with minimum distance d can correct t = [
d− 1

2
]

bit errors

Proof Imagine a space in which points in that space are codewords in Fn2 and
the distance between those points is equal to the hamming distance between the
codewords. Let s ∈ Fn2 and a sphere of radius r between the set of all vectors
v such that d(s, v) ≤ r. IF spheres of radius t are placed around each point
then none of the spheres will overlap since 2t ≤ d − 1. Thus if in a received
word y, no more than t errors occur, that word will lie in one and only one
sphere and nearest neighbor decoding will correctly identify original codeword.
If spheres of radius of t+1 are put around the points then some of the spheres
will overlap since the diameter will be d+1. Thus if t+1 errors occur in a
received word ,y,then it will lie in the overlap region and if d(y, c′) < t+ 1 then
nearest neighbor decoding will give c’ as the original codeword which will be
wrong.

1.2 Error Detection and Correction

The parity check matrix H produces a linear transformation from Fn2 →
Fn−k2 . The image of the parity check matrix is called the error syndrome. It is
important to note at this point that kernel of this mapping is our linear code C
i.e

ker(H) = C (14)

3



We can know define cosets of the linear code C as

x+ C = {x+ c| ∈ C} (15)

for x ∈ Fn2

Definition Let g+ C be a coset ofC . The vector I of minimum weight in this
coset is called the coset leader. If there exists more than one then randomly
pick one.

The cosets allow us to define the quotient group Fn2 /C since Fn2 is an abelian
group and C is a normal subgroup. By the first Isomorphism theorem Fn−k2 '
Fn2 /C . We thus have a one to one correspondence between the possible error
syndromes and the available cosets. This allows one to define a maximum
likelihood detection scheme. Let y be the received vector and let g + C be the
coset it belongs to. Thus y = g+x for some x in C . Let c be the transmitted
codeword so that the error e = y-c = g + (x-x) so e ∈ g + C . Therefore the
most probable error ep is the vector in g+C that has the minimum weight. The
decoder thus returns c̃ = y − I as the most probable transmitted codeword.

In this application we used an abelian group as a setting for the codewords
and identified the possible errors with elements of the quotient group.

2 Quantum Error Correction (Stabilizer formal-
ism)

A quantum error correcting code(QECC) t that encodes k qubits into n
qubits is defined through an encoding map ζ from the k-qubit Hilbert space Hk

onto a 2k dimensional subspace Cq of the n-qubit Hilbert spaceHn. It is required
to be unitary. We choose the single-qubit computational basis states(CB) to be
the eigenstates of σjz i.e

σjz |δj〉 = (−1)δj |δj〉 (16)

where j labels the qubits. The CB states for Hk are formed by talking all
possible direct products of the single-qubits CB states:

|δ〉 ≡ |δ1 . . . δk〉 = |δ1〉 ⊗ . . .⊗ |δk〉 (17)

This establishes a one to one correspondence between the unencoded states
|δ〉 = |δ1 . . . δk〉 and encoded states |δ〉 = |δ1 . . . δk〉 so we have that:

|δ1 . . . δk〉 = ζ |δ1 . . . δk〉 (18)

Also we have that σjz → Zj = ζσjzζ
†

Quantum stabilizer codes, Cq is identified with a unique subspace that is
fixed by elements of an abelian subgroup S known as the stabilizer group. More
specifically we have that for all |c〉 ∈ Cq

s |c〉 = |c〉 (19)
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The stabilizer group is a subgroup of the Pauli group which is a group
consisting of n-fold distinct tensor product of the Pauli operators σz, σy, σx and
the identity operator

2.1 Stabilizer Group

The stabilizer group S is constructed from a set of n-k operators g1, . . . gn−k
known as the generators of S because each element in the stabilizer group can
be each element can be written as a unique product of powers of the generators

s = gp11 . . . g
pn−k

n−k (20)

Because the stabilizer group is abelian the generators are mutually commut-
ing operators, Hermitian and unitary operators and of order 2. As a consequence
of their order their eigenvalues are merely ±1.

As the parent space Hn is 2n dimensional we need n commuting operators
to specify a unique state in the Hilbert space. In fact these n operators can be
chosen to be the following: g1 . . . gn−k;Z1 . . . Zk and the 2n simultaneous eigen-
states of these operators can be chosen to be the basis for Hn.These eigenstates
can be labeled by strings l = l1, . . . ln−k; δ = δ1 . . . δk so that

gi |l, δ〉 = (−1)li |l, δ〉 (21)

Zj |l, δ〉 = (−1)δj |l, δ〉 (22)

where i = 1 . . . n− k , j = 1 . . . k and li and δj = 0, 1
Note that for a given string l = l1 . . . ln−k the set of 2k eigenstates |l; δ〉 span a

subspace of Hn which can be labelled by the string l i.e Cq(l1, l2 . . . ln−k) ≡ Cq(l)
and provide a partition of Hn and the subspace determined by the stabilizer
group is labeled as Cq(00 . . . 0). In other words the subspace determined by the
stabilizer group are those elements in the Hilbert that are left invariant under
the action of the stabilizer group elements so s |c〉 = |c〉 ∀c ∈ Cq

Modeling the noise in a quantum setting is more complicated than in the
classical case. It is known to be exponentially hard to exactly simulate the
noise acting for example in a quantum circuit. Thus if we are to study the
noise in a quantum circuit and how to apply QECC we have to assume a model
of the errors that can be efficiently simulated on a classical computer. For
this discussion we will model the noise as simply the random application of
σx, σy and σz with probabilities px, py and pz respectively. The σx operator flips
a qubit, σz potentially changes the phase of the qubit and σy does a combination
of both. To prove the above behavior apply the operators to the state |+〉 =
1√
2

(|0〉+ |1〉) and |−〉 =
1√
2

(|0〉 − |1〉) which form a basis for the one qubit

hilbert space.
So what we have is that elements of the stabilizer group can be labelled by

bit strings of length n− k p = p1 . . . pn−k ∈ Fn−k2
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Theorem 2.1 Let E be an error operator and Cq a quantum stabilizer code
with generators g1, . . . gn−k. The image E(Cq) of Cq under E is C(l) with l =
li . . . ln−k.

li =

{
0 if [E, gi] = 0

1 if {E, gi} = 0

Proof We assume what will be proved later, that is E either commutes or
anti-commutes with gi. So giE |c〉 = (−1)liEgi |c〉 = (−1)liE |c〉 where li =
{0, 1}. This means that corrupted state is an eigenvector of the generators.
Now {|l; δ〉 : l ∈ Hn−k

2 , δ ∈ Hk
2 } span Hn

2 and so E |c〉 =
∑
l

∑
δ a(l; δ) |l; δ〉.

Because E commutes or anti-commutes with all the generators and |l; δ〉 are
eigenvectors of the generator, this all implies that sum over l does not exist and
we only have one particular value of l. Therefore E |c〉 =

∑
δ a(l; δ) |l; δ〉. This

means that the error taes the element of the code space to a specific subspace of
C(l). Therefore E(Cq) ⊂ C(l). But these vector spaces are the same dimension
so they are in fact equal. �

The lesson to take is that for each E we can attach a syndrome measurement
S(E) = l1 . . . ln−k

Example

Quantum Stabilizer Code for Phase Flip Channel

η : H1
s 7−→ Cq ⊂ H3

2

We need 2 generators {g1, g2}. There 8 possible errors. We want to pro-
tect our state against a phase flip. Thus there are three possible errors E1 =
σ1
z , E2 = σ2

z , E3 = σ3
z . Depending on whether we have |0〉 , |1〉 we will have a

phase flip or not. The phase flip will show up as a change in the relative phase.
So we choose eigenstates of σ1

xσ
2
x, σ2

xσ
3
x as elements of our code subspace.

Error Syndrome
S(E) = (1, 0)

{σ1
z , σ

1
xσ

2
x} = 0

[σ1
z , σ

2
xσ

3
x] = 0

S(E) = (1, 1)

{σ2
z , σ

1
xσ

2
x} = 0

[σ2
z , σ

2
xσ

3
x] = 0
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S(E) = (0, 1)

[σ3
z , σ

1
xσ

2
x] = 0

{σ3
z , σ

2
xσ

3
x} = 0

Elements of the stabilzer group are of the form s(p) = gp11 g
p2 p1, p2 ∈ {0, 1}

So S = {I, σ1
xσ

3
x, σ

1
xσ

2
x, σ

1
xσ

3
x}

2.2 Deeper Study of Stabilizer Formalism

The Pauli group Gn has elements written as e = iλσ1
j1
⊗ · · · ⊗ σnjn where

λ = {0, 1, 2, 3}, jk = {I, x, y, z}. Since σky = −iσkxσkz we can always write

the elements of the Pauli group as e = iλσx(a)σz(b) where a = a1 . . . an and
b = b1 . . . bn . a and b are n bit strings. We will worth with the quotient group
Gn/C C = {±I,±iI}.

Theorem 2.2 1. The order of Gn and Gn/C are 22n+2and2n respectively.
2. ∀e ∈ Gn, e2 = ±I, e† = ±e, e−1 = e†

3. ∀e, f ∈ Gn either [e, f ] = 0 or {e, f} = 0

Proof The order of the group is a trivial exercise in combinatorics. We move on
the second claim. e2 = i2λσ1

j1
⊗· · ·⊗σnjnσ

1
j1
⊗· · ·⊗σnjn = (−1)λ(−1)a·bσx(a)2σx(b)2 =

(−1)λ+a·bI =⇒ ±I.
e† = (−i)λσz(b)†σx(a)† = (−1)a·b(−1)λ(i)λσx(a)σz(b) = ±e. Lastly, we prove
that the elements either commute or anti-commute. Let e = iλeσx(ae)σz(be),
f = iλfσx(af )σz(bf ). The ef = (i)λe+λfσx(ae)σz(be)σx(af )σz(bf ) = (i)λe+λf (−1)be·afσx(ae)σx(af )σz(be)σz(bf ) =
(i)λe+λf (−1)be·af (−1)ae·bfσx(af )σz(bf )σx(ae)σz(be) = (−1)be·af+ae·bf fe Γ =
be · af + ae · bf ∈ Z if Γ is even then the elements commute and if Γ is odd
then the elements anti-commute �

2.2.1 Errors

Errors having a vanishing syndrome S(E) = 0 commute wil all generators
of the stabilizer group. Let C(S) be the set of error e ∈ Gn that commute
with e ∈ S. C(S) is called the centralizer. The centralizer is a subgroup of
Gn ? 1. The centralizer has the identity since [I, S] = 0∀s ∈ S, 2. For
g ∈ C(S) we have [g, s] = 0∀s ∈ S so gs = sg so g−1ggs = sggg−1 but
g2 = I =⇒ g−1a = sg−1 =⇒ [g−1, s = 0] so g−1 ∈ C(S). Since the stabilizer
grup is Abelian S ⊂ C(S). If an even e ∈ C(S) is in S the it needs no error
correction if it is in C(S − S) it will not be detectable. Further more C(S) is a
normal subgroup of Gn. The proof proceeds as follows.

Let c ∈ C(S), s ∈ S, g ∈ Gn . We have csc−1 ∈ S. Now look at gc(g−1sg)g−1 =
g(g−1sg)cg−1 = s(gcg−1) ∈ C(S). Therefore C(S) is normal. A slightly more
abstract way is to notice that Gn acts on S by conjugation with the kernel being
C(S). Now a kernel is a group and moreover a normal subgroup. This all means
we can create the quotient group Gn/C(S).
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Theorem 2.3 Two elements e1, e2 are in the same coset iff they have the same
error syndrome.

Proof If they are in the same coset then they differ by an element c of C(S).
Let e2 = e1c. Consider e1gi |d〉 with |d〉 being a code word. So e2c

−1gi |d〉 =
e2gic

−1 |d〉 = e2gi |d〉 = e1gi |d〉. In other direction, e2e1g = ge2e1 so the product
belongs in the centralizer. Product commutes because e1, e2 have the same
syndrome measurement. Therefore ∃c ∈ C(S) such that e2e1 = c =⇒ e1 =
ce−12 . Proving the theorem

The result is that different error syndromes are in 1-1 relation with the cosets
of the centralizer.

Theorem 2.4 |Gn : C(S)| = number of cosets is 2n−k.

Proof Each coset corresponds to a unique syndrome measurement. The num-
ber of syndrome measurements is 2n−k

Theorem 2.5 The number of elements in C(S) = 2n+k+2

Proof By Lagrange’s theorem |Gn|
C(S) = |Gn : C(S)|. So Gn

|Gn:C(S)| = |C(S)| =

2n+2

2n−k = 2n+k+2

Now C(S)/S has elements that commute with the stabilizer generators but
change the codeword. The turn out to be the logical operators.
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